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Abstract

In Reinforcement Learning there is often a need for greater sample efficiency when learning an optimal policy, whether
due to the complexity of the problem or the difficulty in obtaining data. One approach to tackling this problem is to
introduce external information to the agent in the form of domain expert advice. Indeed, it has been shown that giving an
agent advice in the form of state-action pairs during learning can greatly improve the rate at which the agent converges
to an optimal policy. These approaches typically assume a single, infallible expert. However, it may be desirable to
collect advice from multiple experts to further improve sample efficiency. This may introduce the problem of multiple
experts offering conflicting advice. In general, experts (especially humans) can give incorrect advice. The problem of
incorporating advice from multiple, potentially unreliable experts is considered an open problem in the field of Assisted
Reinforcement Learning.

Contextual bandits are an important class of problems with a broad range of applications such as in medicine, finance
and recommendation systems. To address the problem of learning with expert advice from multiple, unreliable experts,
we present CLUE (Cautiously Learning with Unreliable Experts), a framework which allows any contextual bandit al-
gorithm to benefit from incorporating expert advice into its decision making. It does so by modelling the unreliability of
each expert, and using this model to pool advice together to determine the probability of each action being optimal.

We perform a number of experiments with simulated experts over randomly generated environments. Our results show
that CLUE benefits from improved sample efficiency when advised by reliable experts, but is robust to the presence of
unreliable experts, and is able to benefit from multiple experts. This research provides an approach to incorporating the
advice of humans of varying levels of expertise in the learning process.
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1 Introduction

Sample efficiency is often an issue of great concern in Reinforcement Learning (RL). This is often due to the complexity
of a problem, which may consist of a large number of states and actions. It may also be due to the difficulty in acquir-
ing data. The Assisted Reinforcement Learning (ARL) framework seeks to improve sample efficiency by incorporating
external information in the learning process [1]. For example, a domain expert could advise an expert on which action it
should perform in a given state. This advice could be given throughout the learning process, in response to the agent’s
behaviour; an approach termed Interactive Reinforcement Learning (IRL). The types of advice offered by an expert may
differ between approaches. In this work, we consider policy-shaping advice in the form of a single action offered for a
state, as it is often easier to elicit from a domain expert and is more robust to infrequent and inconsistent feedback [7].

It is often assumed that advice is coming from a single, infallible expert. These assumptions are not always practical,
however. Experts, especially humans, can give suboptimal advice due to misunderstandings (e.g. advice is given for the
wrong state), erroneous domain knowledge or on purpose with the intent of sabotaging the agent. Restricting advice
to a single expert also limits the amount of information the agent can receive. Multiple experts can potentially have
different perspectives or areas of expertise, and the contradictions and consensus between experts may reveal additional
information.

Our aim is to build on the IRL approach in the specific context of contextual bandits (CBs), which are in essence RL
problems whose episodes are a single timestep in length, where we attempt to tackle the open problem of incorporating
the advice of multiple, potentially unreliable experts in policy-learning. Our main contribution in this regard is CLUE
(Cautiously Learning with Unreliable Experts). This framework uses a model of the reliability of the experts to augment
any CB action-selection algorithm with the ability to incorporate advice from multiple experts.

Related Work: There have been some approaches to tackling the problems of multiple experts and of unreliable experts,
though the experts in these approaches often provide other forms of advice than the action advice we consider. Gimel-
farb, Sanner, and Lee [6] combine reward-shaping advice from multiple experts as a weighted sum of potential functions,
where the weights are updated as the agent learns. The decision-making rule in Section 2.2 is directly inspired by this
Bayesian combination of advice. Griffith et al. [7] account for incorrect advice by modelling the probability of an expert
giving correct advice with a single, static parameter C ∈ (0, 1). Such a model of reliability is expanded on in Section 2.1.
Other approaches include the adversarial bandit algorithms EXP4 and EXP4.P, whose experts provide advice in the form
of probability vectors [10], and the probabilistic policy reuse algorithm, in which experts’ entire policies are transferred
and weighted against the agent’s own policy using the reward [5].

2 Methodology

In this section we describe the CLUE framework and the problem setting, which is composed of three actors: an en-
vironment, an agent and a panel E of one or more experts. The environment is a standard Contextual Bandit (CB)
environment. For each trial t, it samples state st, accepts action at from the agent and returns reward rt. At the end of the
trial, each expert e in panel E receives ⟨st, at, rt⟩ and may independently offer their own advice, (st, a

(e)
t ) on what action

the agent should have taken this trial. How and when an expert decides to offer advice may differ between experts.
In our formulation of the problem, we assume each expert to be a domain expert with consistent reliability across the
breadth of the problem. It is worth noting here that, although we choose to have the expert give advice at the end of the
trial in this work, this can occur instead at the start of a trial without requiring any change to the CLUE algorithm.

The agent is composed of three components, the first of which is a learning algorithm, which uses the information
⟨st, at, rt⟩ to learn a policy, such as the action-value update rule Q(st, at)← Q(st, at) + α(rt −Q(st, at)), where Q(s, a) is
the action-value function and α ∈ [0, 1] is a step size parameter.

The second component, and one of the contributions of this work, is a model of the reliability of each expert (see Section
2.1). This model is necessary for learning which pieces of advice are to be followed and which are to be ignored. When
an expert utters a piece of advice at the end of a trial, the agent uses its own information about the environment (such as
an action-value function) to evaluate the advice and update the model. The third component, and another contribution
of this work, is a decision making process which uses the information learned by the learning algorithm and the models
of each expert to select an action for a state while exploring, given any advice it has previously received for that state (see
Section 2.2).

2.1 Modelling Experts

Intuitively, we can think of an expert’s reliability as the probability of them giving optimal advice [7]. We can therefore
model it as ρ ∈ [0, 1], where ρ = 1 is an infallible expert and ρ = 0 is an expert that always gives suboptimal advice.
Given the range of values, a natural choice is to model the probability distribution P (ρ) as a Beta distribution Betaρ[α, β],
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where α, β > 0 can be thought of as counts recording the number of times the expert gave correct and incorrect advice
respectively.

At the end of trial t, the agent must update this distribution for each expert that gave advice for st sometime in the past.
To do this, the agent can evaluate the advice as either optimal or suboptimal, given its own information. In this work,
we set xt = 1 if Q(st, a

(e)
t ) = maxaQ(s, a), and xt = 0 otherwise, where a

(e)
t denotes the advice received from expert e.

Let xt = 1 denote an optimal evaluation, and xt = 0 denote a suboptimal evaluation. In order to allow for inconsistent
experts (e.g. an expert whose performance degrades over time), we update an estimate χ of the expected value E[ρ] using
a recency-weighted moving average with weight parameter δ ∈ [0, 1],

χt+1 = (1− δ)χt + δxt, (1)

where χ0 = E0[ρ] =
α0

α0+β0
, with prior counts α0 and β0.

2.2 Making Decisions

Suppose that, at the start of trial t, the agent observes state st and recalls any advice that some subset Et ⊆ E of ex-
perts offered for state st in trials [0, ..., t − 1]. The agent must now use its model of the reliability of each expert to
decide which advice (if any) to follow. In order to allow the agent to surpass the performance of the experts advis-
ing it, we only allow the agent to consider expert advice when exploring. Determining when the agent is exploring
depends on the underlying action-selection algorithm. As CLUE can augment any CB action-selection algorithm, we
consider the Epsilon-Greedy, Adaptive Greedy, Explore-then-Exploit (ETE) and Upper Confidence Bound (UCB) algo-
rithms, representing several families of CB algorithms [4]. For the first three algorithms, whether or not the agent is
exploring is explicitly determined by the algorithms’ parameters. For UCB, the agent can be said to be exploring if

argmaxaQ(s, a) ̸= argmaxa(Q(s, a) + c
√

2ln(t)
N(s,a) ), where N(s, a) counts the number of times action a has been selected

for state s and c is a parameter that balances exploration and exploitation.

If exploring, the agent must choose between the action suggested by the underlying action-selection algorithm or be-
tween following advice it has received for s, in which case it must choose which advice to follow. If Et = ∅, no advice
has been offered, such as may happen at the beginning of the learning process, and the agent must act without advice
according to its underlying action-selection algorithm. If |Et| ≥ 1, at least one expert has offered advice. In order to take
advantage of the information provided by consensus and contradiction among experts, we employ a Bayesian method
of pooling advice, inspired by similar approaches in potential-based reward shaping [6] and in crowd-sourced data la-
belling [2]. Let a∗ denote the optimal action for state st and v

(e)
t denote the advice utterance given by expert e for st, with

Vt denoting the set {v(e)t |e ∈ Et}. Our aim, therefore, is to calculate P (aj = a∗|Vt) for each aj ∈ A. To do this, we employ
Bayes’ rule, coupled with the assumptions that each expert gives advice independently of every other expert and that
each action has a uniform prior probability of being optimal,

P (aj = a∗|Vt) =

∏
e∈Et

P (v
(e)
t |aj = a∗)∑|A|

k=0

∏
e∈Et

P (v
(e)
t |ak = a∗)

. (2)

Note that, if for a particular domain one can reasonably assume a non-uniform prior distribution of P (a = a∗), this
distribution can be incorporated into Equation 2 without fundamentally changing this decision-making process.

All that remains is to calculate P (v
(e)
t |aj = a∗). Recalling that the probability of the advice being correct is estimated by

χ(e) ≈ E[ρ(e)] and assuming that, if the advice is incorrect, the expert is equally likely to advise any suboptimal action,
then P (v

(e)
t |ak = a∗) = χ(e) if the expert advised ak and P (v

(e)
t |ak = a∗) = 1−χ(e)

|A|−1 otherwise. Substituting this into
Equation 2, we can calculate the probability of each action in A being optimal, and can set abest = argmaxa P (a = a∗|Vt).
In an approach reminiscent of both Epsilon Greedy and probabilistic policy reuse [5], the agent selects action abest with
probability P (abest = a∗|Vt), and otherwise acts as if Et = ∅. This allows for a trade-off between following advice and
exploring as normal, where the former is more likely if the agent is confident that abest is optimal.

In the above formulations, we have assumed that the estimated χ(e) accurately represents the underlying reliability of the
expert e. Early in the learning process however, this will not be the case. Erring on the side of caution, we can compensate
for the over-estimation of the reliability of particularly bad experts by introducing a threshold parameter T ∈ [0, 1], such
that if P (abest = a∗|Vt) < T , the agent acts without advice. This approach ensures that the agent will only follow advice
if it is sufficiently confident that the advice is correct.
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3 Experiments and Results

In this section, we present a number of experiments to demonstrate that CLUE benefits from improved sample efficiency
when being advised by a reliable expert but is robust to the presence of suboptimal advice. Furthermore, we aim to show
that CLUE can benefit from advice from a panel of multiple experts with varying degrees of reliability.

These experiments are performed using a number of randomly generated Contextual Bandit environments, specified
by Influence Diagrams with a great diversity of randomly generated graph structures and parameters [8]. Experts are
simulated, and are limited in how much advice they can give, thus only giving advice if the agent is underperforming
within some degree of tolerance [9]. In order to simulate reliability, each expert is controlled by a true reliability parameter
ρtrue. When offering advice, the expert will advise the optimal action a∗ with probability ρtrue, or else will randomly
advise any other action. Thus an expert with ρtrue = 1 is reliable, while one with ρtrue = 0 never advises the optimal
action.

3.1 Panel Comparisons

In this set of experiments, we compare the reward obtained in 80, 000 trials, averaged across 100 random environments
(|S| = 1024, |A| = 8). LOWESS smoothing is employed for legibility [3], with the standard deviation represented by the
shaded areas. We compare the performance of each agent with three panels of experts. The first, a Single Reliable Expert,
consists of one expert that always gives correct advice (ρtrue = 1). The second, a Single Unreliable Expert, consists of one
expert that always gives incorrect advice (ρtrue = 0). The third, a Varied Panel, consists of seven experts with varying
degrees of unreliability (Ptrue = {0, 0.1, 0.25, 0.5, 0.75, 0.9, 1}). Agents tested include an unassisted Baseline Agent, a Naı̈ve
Advice Follower (NAF), which follows any advice it has received for a state (choosing randomly between contradicting
advice) otherwise acting as the Baseline Agent, and CLUE (α0 = 1 = β0, T = 2

|A| , δ = 0.5), which augments the Baseline
Agent. The four tested baselines are Epsilon Greedy (ϵ decays from 1 to 0 across 80% of trials), Adaptive Greedy (z decays
from 1 to −1 across 80% of trials), Explore-then-Exploit (ETE, threshold of 20, 000) and Upper Confidence Bound (UCB,
c = 0.25), all of which employ the Q update rule in Section 2 (Q0 = 0, α = 1

k(s,a) ). Results are shown in Figure 1.

(a) (b)

(c) (d)

Figure 1: Panel comparisons for (a) Epsilon Greedy, (b) Adaptive Greedy, (c) ETE and (d) UCB. Note that CLUE and the
Baseline are nearly identical for ρtrue = 0.

For ρtrue = 1, both CLUE and NAF converge faster than all Baselines as they quickly benefit from the optimal advice
provided by the reliable expert. A demonstration of the robustness of CLUE comes when ρtrue = 0. In this scenario,
NAF exclusively follows sub-optimal advice and thus is unable to converge to the optimal policy. CLUE on the other
hand is able to identify that the expert is unreliable and defaults to its underlying action-selection algorithm, performing
identically to the Baselines. For the varied panel, the performance of NAF lies somewhere between the two single
expert cases, as it receives a mix of advice including optimal and suboptimal actions, and cannot discern which advice
is advantageous to follow. CLUE is able to differentiate between reliable and unreliable experts and benefits from the
former despite the presence of the latter. In all cases, CLUE either converges faster than the Baseline when good advice
is available, or otherwise converges at the same rate as the Baseline.
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3.2 Reliability Estimates

To investigate the results obtained in Section 3.1, we plot the value of χ(e) over time for the same panels of experts and
with an Epsilon Greedy Baseline. Results are plotted in Figure 2.

Figure 2: A comparison of χ(e) for each panel with an Epsilon Greedy Baseline. The Legend denotes the value of ρtrue

For the single expert cases, the value of χ converges towards the correct value of ρtrue (1 and 0 respectively), with the
final estimates being χ = 0.995 for the single reliable expert and χ = 0.005 for the single unreliable expert. For the
varied panel, each expert is correctly ranked according to their reliability and the value of χ(e) for each expert e correctly
converges towards the true value of ρ(e)true, even faster than the single expert cases. This accuracy in the estimates of
reliability explains the performance obtained in Section 3.1. As is to be expected, the variance in the final estimate is
larger for experts that randomly choose between suboptimal and optimal advice (ρtrue = 0.5) than for experts that more
consistently offer one or the other.

4 Conclusion

Our results show that CLUE is able to incorporate expert advice in such a way that it benefits from improved sample effi-
ciency when advised by a reliable expert, but is robust to advice from unreliable experts. Furthermore, by modelling the
reliability of the experts, CLUE is able to incorporate advice from multiple experts, even when these experts contradict
each other. When multiple experts are present, CLUE is able to rank them by their reliability and exploit the information
revealed by consensus and contradiction between experts. This work may allow for easier integration of external infor-
mation in the learning process, ultimately contributing towards tackling more complex problems with greater sample
efficiency.
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