
Who Should I Trust? Cautiously Learning with
Unreliable Experts

Supplementary Material

Tamlin Love,1∗ Ritesh Ajoodha,1 Benjamin Rosman1

1School of Computer Science and Applied Mathematics,
University of the Witwatersrand, Johannesburg, South Africa

∗1438243@students.wits.ac.za

1 Pseudocode

Algorithm 1 outlines the standard process for solving SSDPs without any external information,

as described in Section 2.1. of the paper. This can be compared to Algorithm 2, which outlines

the CLUE process for solving SSDPs with the advice of multiple experts.

Algorithm 1 Single Stage Decision Problem
1: procedure STANDARD_SSDP(environment,N) ▷ N = number of trials
2: for t ∈ [0, ..., N − 1] do
3: st ←sample_state(environment)
4: at ←select_action(st) ▷ agent acts (e.g. Algorithms 4 - 7)
5: rt ←execute_action(at, environment)
6: learn(st, at, rt) ▷ agent learns (e.g. Algorithm 3)

Algorithm 3 presents the action-value update rule as described in Equation 1 of the main

paper, where α ∈ (0, 1] is the learning rate parameter.

Algorithms 4, 5, 6 and 7 outline how the unassisted Epsilon Greedy, Adaptive Greedy,

Explore-then-Exploit (ETE) and Upper Confidence Bound (UCB) algorithms select actions

1

Algorithm 2 Cautiously Learning with Unreliable Experts
1: procedure CLUE(D,E,N) ▷ D = environment, E = panel of experts, N = number of

trials
2: for t ∈ [0, ..., N − 1] do
3: st ←sample_state(D) ▷ environment selects state
4: at ←act(st) ▷ Algorithm 8
5: rt ←execute_action(at, D) ▷ environment returns reward
6: advicet ←advise(E, st, at, rt) ▷ e.g. Algorithm 10
7: learn(st, at, rt) ▷ e.g. Algorithm 3
8: update(st, at, rt, advicet) ▷ Algorithm 9

Algorithm 3 Baseline Approach for Solving SSDPs
1: procedure LEARN(st,at,rt,t)
2: Q(st, at)← Q(st, at) + α(rt −Q(st, at))

given a state st in trial t. In these algorithms, ϵ ∈ [0, 1] denotes the exploration parameter

for Epsilon Greedy, z ∈ R denotes the utility threshold parameter for Adaptive Greedy, tb de-

notes the time at which the ETE algorithm stops exploring and starts exploiting, c ∈ R denotes

the UCB parameter that balances exploration and exploitation, and N(s, a) is a function that

denotes the number of times the state-action pair (s, a) has been observed.

Algorithm 4 Epsilon Greedy
1: procedure ACT(st,ϵ)
2: p←random()
3: if p < ϵ then
4: return random a ∈ A ▷ agent “explores"
5: else
6: return argmaxa Q(st, a) ▷ agent “exploits"

Algorithm 8 outlines the process by which a CLUE agent selects an action in trial t for state

st, given the threshold parameter T and the reliability estimate E[ρ(e)] of each expert e in E.

This augments an unassisted action-selection algorithm (e.g. Algorithms 4 - 7). The procedure

for determining whether or not the agent is exploring is discussed in Section 3.2 of the main

paper.

2

Algorithm 5 Adaptive Greedy
1: procedure ACT(st,z)
2: a∗t ← argmaxa Q(st, a)
3: if Q(st, a

∗
t) > z then

4: return a∗t ▷ agent “exploits"
5: else
6: return random a ∈ A ▷ agent “explores"

Algorithm 6 Explore-then-Exploit
1: procedure ACT(st,t,tb)
2: if t ≥ tb then
3: return argmaxa Q(st, a) ▷ agent “exploits"
4: else
5: return random a ∈ A ▷ agent “explores"

Algorithm 9 outlines the process by which a CLUE agent updates the reliability estimate of

each expert, where v
(e)
t denotes the advice given by expert e in trial t, Vt denotes the set of all

advice given in trial t, and δ ∈ [0, 1] is a weight parameter for the recency-weighted moving

average.

Algorithm 10 outlines the process by which each expert e ∈ E decides whether or not to

offer advice to the agent and whether or not the advice is optimal, as discussed in Section 4 of

the paper.

2 Additional Experiments

2.1 Experts with Degrading Performance

In this set of experiments, we examine how CLUE performs with experts whose reliability

degrades over time. The initial values of ρtrue are identical to those in Section 4.1 of the main

paper, but are multiplied by 0.9999 each trial to simulate slow degradation in performance.

Results across 10, 000 trials are averaged over 100 random environments, where |VS| = 7 and

|VA| = 3, and are plotted in Figure 1.

3

Algorithm 7 Upper Confidence Bound
1: procedure ACT(st,t,c,N)
2: return argmaxaQ(st, a) + c

√
2ln(t)
N(st,a)

Figure 1: Panel comparisons with experts with degrading performance.

Results for ρtrue = 0 are identical to those in the Single Unreliable Expert case in Section

4.1 of the main paper, as there is no room for further degradation in performance. For the

other panels, CLUE is able to benefit initially from the correct advice it receives, and as experts

degrade learns to no longer trust them, retaining the improvement it receives from initial, correct

advice while not suffering in performance due to later, incorrect advice. This demonstrates that

CLUE is robust not only with consistent experts, but also with degrading experts.

2.2 Alternate Approach to Expert Simulation

In this set of experiments, we consider a different approach to simulating experts. In this ap-

proach, each expert only observes a subset of state variables in the influence diagram that rep-

resents the environment, and must advise an action based on this partial observation. Thus an

expert with 0 hidden variables is reliable and an expert with |VS| hidden variables always ad-

vises the action most likely to be optimal given no observation of the state. A comparison of

the performances of CLUE and NAF in an environment where |VS| = 7 and |VA| = 3, averaged

over 10 runs, is given in Figure 2. For the sake of clarity, the shaded areas representing one

4

Figure 2: A comparison of agent performance advised by a single expert with varying numbers
of hidden state variables. The legend denotes the number of hidden state variables. The Epsilon
Greedy Baseline Agent is also given for comparison.

standard deviation are removed.

Here CLUE outperforms the Baseline Agent when the number of hidden state variables is

less than |VS|, as in these cases the expert is more likely to advise the optimal action than any

other action, and performs on par with the Baseline Agent when the amount of information

that can be gained from the expert is minimal. NAF, on the other hand, only converges to the

optimal policy when the expert is reliable, performing poorly otherwise. These results further

demonstrate the fact that CLUE benefits from advice from reliable experts and is robust to

advice from unreliable experts.

2.3 Initial Reliability Estimates

In this set of experiments, we investigate the effect of varying the α0 and β0 parameters which

determine the prior reliability distribution (see Section 3.1 of the main paper). Recall that

α0 and β0 can be thought of as prior counts of the expert giving incorrect and correct advice

respectively. Thus α0 > β0 biases ρ towards 0, and α0 < β0 towards 1, with α0+β0 determining

the strength of that prior against trial data. To measure their effect, we plot the difference

5

between the average total regret of the Baseline Agent and the average total regret of CLUE

(both using Epsilon Greedy unassisted action selection) for a number of different α0 and β0

values, summed over 10, 000 trials and averaged over 100 runs for an environment with |VS| = 7

and |VA| = 3, where the total regret is equal to

RAgent =
∑

0≤t<N

r(st, π
∗(st))− r(st, at), (1)

and the difference in regret is

RCLUE −RBaseline. (2)

Therefore, a value of 0 indicates performance equal to the Baseline Agent. Minimising regret is

equivalent to maximising reward, and thus a lower difference in regret indicates better perfor-

mance. This process was repeated for each of the panels described in Section 4.1 of the main

paper, and plotted in Figure 3. The average total regret obtained by the Baseline Agent was

3505.0, and the average total regret obtained by NAF was 411.1 for the single reliable expert

(difference: −3093.9), 9449.7 for the single unreliable expert (difference: 5944.7), and 4994.5

for the varied panel (difference: 1489.5).

Figure 3: The total difference in regret between the Baseline Agent and CLUE for each value
of α0 and β0 and for each panel. Lower values indicate better performance of CLUE.

For the single reliable expert, the best performance occurs when the parameters heavily bias

6

the estimate towards 1. However, all tested values result in improved performance over the

Baseline Agent, and the gain in performance between α0 = 1, β0 = 1 and α0 = 1, β0 = 1000 is

minimal. Results for the single unreliable expert are less varied, with performance close to the

Baseline Agent for all tested values. Performance is only degraded when β0 is large.

The best performance for the varied panel occurs when both parameters are low, as the

variety in ρtrue means that no single strong prior can bias the reliability distributions correctly

for all experts at a time. Across all panels, the performance with a relatively uninformative prior

is close to, if not equal to, the best performance, making it a reasonable choice in the absence of

strong belief about an expert’s reliability. These results also demonstrate that CLUE is robust to

the choice of prior, except where α0+β0 approaches the order of magnitude of the total number

of trials.

2.4 Expert Parameters

In this set of experiments, we investigate the effect of varying the number of interactions be-

tween the agent and each expert. Recall from Section 4 of the main paper that the number of

interactions is determined by the values of µ and γ, with lower values of both resulting in more

interactions and higher values of both resulting in fewer interactions. Similar to the previous

section, we plot the difference in average total regret between the Baseline Agent and CLUE,

and between the Baseline Agent and NAF, for varying values of µ and γ, as depicted in Figure 4.

The environment and number of trials and runs is identical to Section 2.3, and α0 = 1, β0 = 1,

as in Section 4.1 of the main paper.

With NAF, more advice results in better performance when the advice is always correct, but

worse performance when the advice is sometimes incorrect. CLUE on the other hand is robust

to the presence of incorrect advice; more correct advice results in better performance, but more

incorrect advice has no adverse effect on performance.

7

Figure 4: The total difference in regret between the Baseline Agent and CLUE and Baseline
Agent and NAF for each value of µ and γ and for each panel. Lower values indicate better
performance.

2.5 Adversarial Advice

To illustrate how CLUE can benefit from adversarial advice (advice from an expert that is

consistently wrong), we compare the average reward obtained by the agent advised by a single

reliable expert (ρtrue = 1) and a single unreliable expert (ρtrue = 0), in an environment where

|VS| = 10 and |VA| = 1, and thus |A| = 2, averaged over 100 runs. Both the Baseline and

CLUE use Epsilon Greedy unassisted action selection. Results are plotted in Figure 5.

For both experts, CLUE shows a similar improvement in performance over the Baseline

Agent. This improvement is possible in the case of the single unreliable expert because, having

estimated the reliability of the expert to be low, the suboptimal action advised by the expert is

deemed to have a low probability of being optimal, thus improving the probability of the other

action being optimal.

8

Figure 5: A comparison of the performance of CLUE with a single reliable expert (ρtrue = 1)
and a single unreliable expert (ρtrue = 0) for an environment where |A| = 2.

3 Theoretical Analysis

In this section, we show the conditions for which CLUE, when exploring, will have a higher

probability of selecting the optimal action for a given state than some default unassisted explo-

ration strategy, when acting in an environment where |A| = 2 and being advised by a single

expert that operates under the following assumption

Assumption 1. Assume an expert has a true reliability ρtrue ∈ [0, 1] such that, when giving ad-

vice, it advises the optimal action with probability ρtrue and otherwise advises some suboptimal

action with probability 1−ρtrue
|A|−1

.

To do this, we define a function W (a) which represents the probability of selecting a given

action when exploring. For example, if selecting actions with uniform random probability,

W (a) = 1
|A| ∀a ∈ A. We show the values of E[ρ] (the agent’s estimate of the reliability, which

may or may not be accurate) for which the probability of selecting the optimal action a∗ is

greater than or equal to W (a∗), given W and ρtrue.

To aid in the proof of this theorem (Theorem 1), we first prove Lemma 1, which shows the

conditions for which a CLUE agent is guaranteed to identify a given action as optimal.

9

For a uniform random exploration strategy (W (a) = 1
|A| ∀a ∈ A), the implication of Theo-

rem 1 is that there will be improved performance provided that the estimate E[ρ] is on the same

side of 1
2

as the true reliability ρtrue. For another exploration strategy, the improvement may

increase or decrease depending on the probability of selecting a∗ under that strategy.

Lemma 1. Suppose an environment with |A| = 2 and a panel consisting of a single expert.

Let E[ρ] denote the agent’s estimate of the reliability of the expert. For any given state the

expert has advised for, the optimal action a∗ will be identified as such by the agent if one of the

following holds

• The expert advised a∗ and E[ρ] > 1
2

• The expert did not advise a∗ and E[ρ] < 1
2

If E[ρ] = 1
2
, the agent is equally likely to identify

Proof. From Equation 3 of the main paper, we have that

P (aj = a∗|Vt) =

∏
e∈Et

P (v
(e)
t |aj = a∗)∑|A|

k=0

∏
e∈Et

P (v
(e)
t |ak = a∗)

, (3)

which, given that |Et| = 1 and |A| = 2, reduces to

P (aj = a∗|Vt) =
P (v

(e)
t |aj = a∗)

P (v
(e)
t |a0 = a∗) + P (v

(e)
t |a1 = a∗)

. (4)

Without loss of generality, let a0 denote the optimal action for st. Substituting in Equation 4 of

the main paper, Equation 4 is equal to

P (aj = a∗|Vt) =
P (v

(e)
t |aj = a∗)

E[ρ] + 1− E[ρ]

= P (v
(e)
t |aj = a∗), (5)

which is equal to E[ρ] if the expert advised aj and 1−E[ρ] otherwise. Let abest denote the action

that maximises P (aj = a∗|Vt).

10

We consider 2 cases.

Case 1: The expert has advised a0. Thus,

P (a0 = a∗|Vt) = E[ρ]

P (a1 = a∗|Vt) = 1− E[ρ].

P (a0 = a∗|Vt) > P (a1 = a∗|Vt) is therefore only true when E[ρ] > 1
2
, and thus the agent will

identify a0 as the optimal action if E[ρ] > 1
2
. If E[ρ] = 1

2
, the agent will do so with probability

1
2
.

Case 2: The expert has advised a1. Thus,

P (a0 = a∗|Vt) = 1− E[ρ]

P (a1 = a∗|Vt) = E[ρ].

P (a0 = a∗|Vt) > P (a1 = a∗|Vt) is therefore only true when E[ρ] < 1
2
, and thus the agent will

identify a0 as the optimal action if E[ρ] < 1
2
. If E[ρ] = 1

2
, the agent will do so with probability

1
2
.

Theorem 1. Suppose an environment with |A| = 2 and a panel consisting of a single expert.

Let W (a) denote the probability of selecting action a when exploring unassisted. Then the

probability of a CLUE agent selecting the optimal action a∗ when exploring is greater than or

equal to W (a∗) if one of the following holds

• E[ρ] = 1
2

and W (a∗) ≤ 1
2

• E[ρ] < 1
2

and W (a∗) ≤ 1− ρtrue

• E[ρ] > 1
2

and W (a∗) ≤ ρtrue

Proof. Let P (a) denote the probability of selecting action a. Let a(e) denote the action advised

by the expert. From the decision-making process described in Section 3.2 of the main paper,

11

we have that

P (a∗) = E[ρ] + (1− E[ρ])W (a∗) if abest = a∗ (6)

P (a∗) = (1− E[ρ])W (a∗) if abest ̸= a∗ (7)

We consider three cases.

Case 1: Let E[ρ] = 1
2
. From Equations 6 and 7, we have that

P (a∗) =
1

2
+

1

2
W (a∗) if abest = a∗

P (a∗) =
1

2
W (a∗) if abest ̸= a∗

From Theorem 1, P (abest = a∗) = 1
2
= P (abest ̸= a∗) and thus

P (a∗) =
1

2
(
1

2
+

1

2
W (a∗)) +

1

2
(
1

2
W (a∗))

=
1

4
+

1

2
W (a∗),

which is greater than or equal to W (a∗) if and only if W (a∗) ≤ 1
2
.

Case 2: Let E[ρ] < 1
2
. From Equations 6 and 7, and from Theorem 1, we have that

P (a∗) = (1− E[ρ])W (a∗) a(e) = a∗

P (a∗) = E[ρ] + (1− E[ρ])W (a∗) a(e) ̸= a∗

From Assumption 1, P (a(e) = a∗) = ρtrue and P (a(e) ̸= a∗) = 1− ρtrue. Therefore,

P (a∗) = P (a(e) = a∗)(1− E[ρ])W (a∗)+

P (a(e) ̸= a∗)(E[ρ] + (1− E[ρ])W (a∗))

= ρtrue(1− E[ρ])W (a∗)+

(1− ρtrue)(E[ρ] + (1− E[ρ])W (a∗))

= E[ρ](1− ρtrue) +W (a∗)(1− E[ρ]),

12

which is greater than or equal to W (a∗) if and only if E[ρ](1−W (a∗)−ρtrue) ≥ 0. As E[ρ] ≥ 0,

it is sufficient to prove that 1−W (a∗)− ρtrue ≥ 0.

1−W (a∗)− ρtrue ≥ 0

−W (a∗) ≥ ρtrue − 1

W (a∗) ≤ 1− ρtrue

Thus P (a∗) ≥ W (a∗) if and only if W (a∗) ≤ 1− ρtrue.

Case 3: Let E[ρ] > 1
2
. From Equations 6 and 7, and from Theorem 1, we have that

P (a∗) = E[ρ] + (1− E[ρ])W (a∗) a(e) = a∗

P (a∗) = (1− E[ρ])W (a∗) a(e) ̸= a∗

From Assumption 1, P (a(e) = a∗) = ρtrue and P (a(e) ̸= a∗) = 1− ρtrue. Therefore,

P (a∗) = P (a(e) = a∗)(E[ρ] + (1− E[ρ])W (a∗))+

P (a(e) ̸= a∗)(1− E[ρ])W (a∗)

= ρtrue(E[ρ] + (1− E[ρ])W (a∗)) + (1− ρtrue)(1− E[ρ]),

which is greater than or equal to W (a∗) if and only if E[ρ](ρtrue −W (a∗)) ≥ 0. As E[ρ] ≥ 0,

P (a∗) ≥ W (a∗) if and only if W (a∗) ≤ ρtrue.

4 Hardware and Software Specifications

Computations were performed using High Performance Computing infrastructure provided by

the Mathematical Sciences Support unit at the University of the Witwatersrand.

Experiments were run on Ubuntu 18.04 machines with Intel(R) Core(TM) i9-10940X CPU

@ 3.30GHz, with 125GiB of RAM.

All code was written and executed in python 3.8.6, with the following libraries:

13

• numpy version 1.19.2

• matplotlib version 3.3.2

• statsmodels version 0.12.0

• networkx version 2.5

Additionally, the implementations of graphical models, influence diagrams, factors and vari-

able elimination are adapted from Poole and Mackworth [1].

References

[1] David L Poole and Alan K Mackworth. Python code for artificial intelligence: Foundations

of computational agents. Version 0.7, 6, 2017.

14

Algorithm 8 Acting with Advice from a Panel of Potentially Unreliable Experts

1: procedure ACT_WITH_ADVICE(st,t,T ,E[ρ(e)])
2: abase ←act(st,...) ▷ unassisted action (e.g. Algorithms 4 - 7)
3: if exploring then
4: Et ← {e|e advised for st in τ ∈ [0, ..., t− 1]}
5: if |Et| = ∅ then ▷ no advice for st
6: return abase ▷ act unassisted
7: else ▷ At least one expert has offered advice
8: for a ∈ A do
9: La ← 0

10: for e ∈ Et do
11: if expert e advised (st, a) then
12: La ← La × E[ρ(e)]
13: else
14: La ← La × 1−E[ρ(e)]

|A|−1

15: for a ∈ A do
16: P (a = a∗)← La∑|A|

i=0 Lai

17: abest ← argmax
a

P (a = a∗)

18: if P (abest = a∗) < T then
19: return abase ▷ act unassisted
20: else
21: q ←random()
22: if q < P (abest = a∗) then
23: return abest ▷ follow advice
24: else
25: return abase ▷ act unassisted
26: else
27: return abase ▷ act unassisted

15

Algorithm 9 Updating Unreliability Estimates
1: procedure UPDATE_ESTIMATES(st,at,rt,Vt,δ)
2: E ′

t ← {e|e advised for st in τ ∈ [0, ..., t]}
3: for e ∈ E do
4: if e advised some action in trial t then
5: store_advice(e,st,v

(e)
t)

6: if e ∈ E ′
t then

7: best_reward← maxa EU(st, a)

8: advice_reward← EU(st, v
(e)
t)

9: if advice_reward ≥ best_reward then
10: x← 1
11: else
12: x← 0
13: E[ρ(e)t+1]← (1− δ)E[ρ(e)t] + δx

Algorithm 10 Expert Advice Process
1: procedure ADVISE(st, at, rt, E)
2: advice← []
3: for e ∈ E do
4: a∗t ←get_optimal_action(st)
5: t′ ←last_advice_trial()
6: if t− t′ ≥ µ(e) then
7: if

∑
t′<i≤t

EU(st,a∗i)−EU(st,ai)

t−t′
≥ γ(e) then

8: p←random()
9: if p < ρ

(e)
true then

10: advice[e]← a∗t
11: else
12: advice[e]←random a ∈ A \ {a∗t}
13: return advice

16

