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Abstract

Work in the field of Assisted Reinforcement Learning (ARL) has shown that the incorporation of external
information in problem solving can greatly increase the rate at which learners can converge to an optimal
policy and aid in scaling algorithms to larger, more complex problems. However, these approaches rely
on a single, reliable source of information; the problem of learning with information from multiple
and/or unreliable sources of information is still an open question in ARL. We present CLUE (Cautiously
Learning with Unreliable Experts), a framework for learning single-stage decision problems with policy
advice from multiple, potentially unreliable experts. We compare CLUE against an unassisted agent and
an agent that naı̈vely follows advice, and our results show that CLUE exhibits faster convergence than
an unassisted agent when advised by reliable experts, but is nevertheless robust against incorrect advice
from unreliable experts.



Portions of this work have appeared in the Workshop on Human-aligned Reinforcement Learning for
Autonomous Agents and Robots as Should I Trust You? Incorporating Unreliable Expert Advice in

Human-Agent Interaction [Love et al. 2021].

An implementation of the CLUE framework presented in this work is available at
https://anonymous.4open.science/r/CLUE_SSDP-4425.
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Chapter 1

Introduction

1.1 Introduction

Single-Stage Decision Problems (SSDPs) are a type of Reinforcement Learning (RL) problem with a
wide range of useful applications, including recommendation systems [Li et al. 2010], investment port-
folio selection [Huo and Fu 2017] and clinical trials [Varatharajah et al. 2018]. For example, consider
the problem of a doctor who can observe a patient’s symptoms and medical history and must prescribe
the right set of treatments to improve the patient’s condition and avoid harmful side effects. A simple
version of such a problem is represented in Figure 1.1. These types of problems have attracted research
looking to augment the doctor with a software agent, with the long-term goal of making such diagnoses
more comprehensive and widely available [Lauritzen and Spiegelhalter 1988; Heckerman and Nathwani
1992; Kao et al. 2018].

As another example, consider the scenario of a robot frail-care assistant, tasked with monitoring its
patient and assisting in daily tasks. Suppose this robot has already learned how to optimally perform
each individual task (e.g. mobility assistance, calling emergency services, dispensing medicine, etc.),
but has yet to learn which tasks to perform in which situations, based on the observations it can make
through its sensors (e.g. video footage, audio signal, time of day, etc.). In such a scenario, it is crucial for
the robot to learn which tasks to perform for given observations, as there is a great deal of risk involved
should the robot perform the wrong task. For example, if the patient has slipped and fallen, the correct
response might be to call for help. If the robot does not perform these tasks, serious harm could come to
the patient.

In both examples, it is important for the autonomous agent to learn the problem with as few cycles of
observation and decision-making as possible, for a number of reasons. Primarily, these types of problems
may be very complex, with a large space of possible observations and decisions. For example, the
medical diagnosis problem may consist of hundreds of potential symptoms and treatments. Additionally,
data acquisition may be difficult, either because the agent is acting in the real-world, thus potentially
damaging itself and its surroundings, or because of ethical and safety issues, especially when dealing
with human patients.

One approach to tackling this complexity and the need for sample efficiency is to incorporate ex-
ternal information in the learning process [Bignold et al. 2020]. For example, an autonomous medical
diagnosis system could be advised by a doctor who instructs the agent to prescribe certain treatments in
response to certain combinations of symptoms and medical history. Given the potential complexity, it
may not always be feasible to elicit all of this information before learning starts. Instead, the human ad-
visor can advise the agent as it learns, in response to its performance. Indeed, previous work has shown
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Figure 1.1: A simple example of the medical diagnosis problem, where an agent observes a patient and
their symptoms and prescribes some set of treatments. Here, the agent is advised to perform a certain
action by a human doctor.

that the interactive incorporation of expert advice can improve the rate at which an RL agent converges
to a given performance threshold, provided that said advice is correct [Torrey and Taylor 2013].

It may be desirable to incorporate advice from multiple experts, either because a single expert
does not have enough expertise to cover the full breadth of the problem, or simply because being able
to incorporate more advice results in better sample efficiency [Shelton 2000]. For example, an agent
learning the medical diagnosis problem could be advised by a whole panel of doctors, consisting of
cardiologists, oncologists, etc. Incorporating advice from multiple experts introduces its own problems,
however, when multiple experts offer conflicting advice for the same situation. Here the agent must
decide which advice to follow and which to ignore. In general, expert advisors, especially humans, can
give incorrect advice, either in error or through active malice [Efthymiadis et al. 2013]. Overcoming
these problems has been identified as an open problem in the field of Assisted RL [Bignold et al. 2020].

In order to address these issues, we present CLUE, a framework for learning SSDPs with policy
advice from multiple, potentially unreliable experts. We demonstrate that CLUE, when advised by
reliable experts, converges faster than an equivalent agent that does not incorporate advice, but is robust
to advice given by experts that may be unreliable to some degree.

1.2 Contributions

The contributions of this work are as follows.

• The CLUE framework for learning SSDPs with the policy advice of multiple, potentially unreli-
able experts, which can be integrated into the SSDP learning process over any existing learning
algorithm (see Section 2.1.2). This consists of the following contributed components.

– A model of the reliability of an expert advisor (Section 3.2.1).

– A decision-making rule that uses the reliability model of each expert in a panel of experts to
determine which advice, if any, to follow during exploration (Section 3.2.2). This decision-
making rule is able to incorporate advice from multiple, potentially unreliable experts and
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can handle contradictions in the advice given.

– A Bayesian update rule that incorporates the agent’s experience of the environment in up-
dating the reliability model of each expert (Section 3.2.3).

• Theoretical analysis which shows the conditions under which a CLUE agent has a higher prob-
ability of acting optimally when exploring compared to some default exploration strategy in a
simple environment (Section 3.4).

• Empirical results which demonstrate that CLUE:

– can benefit from advice given by consistently reliable experts (Section 4.2).

– is robust to advice given by consistently unreliable experts (Section 4.2).

– can correctly rank multiple experts by their reliabilities in order to potentially benefit from
advice given by multiple experts (Section 4.3).

– can exploit information revealed by consensus and contradictions among multiple experts
(Section 4.2), as well as consistently suboptimal advice (adversarial advice, Section 4.2.1),
to improve performance.

– is robust against choices of initial estimates of reliability (Section 4.3.2) and varying degrees
of expert-agent interaction (Section 4.4).

1.3 Structure

The structure of this work is as follows. In Chapter 2, we discuss the concepts upon which this research
is built, including Reinforcement Learning and Single-Stage Decision Problems in Section 2.1 and As-
sisted Reinforcement Learning in Section 2.2, as well as other approaches to solving the problems of
multiple experts and unreliable advice in Section 2.3. In Chapter 3, we discuss the methodology of this
work, including key definitions and assumptions in Section 3.1, the contributions of this work in Section
3.2, the CLUE framework and how it fits into the assisted reinforcement learning paradigm in Section
3.3, and theoretical analysis of the algorithm in a simple environment in Section 3.4.

In Chapter 4, we present a number of experiments that test the performance and functionality of
CLUE, including a discussion of experimental set-up in Section 4.1, a comparison of different panels
of experts in Section 4.2, an investigation into how CLUE estimates the reliability of experts in Section
4.3, and an investigation into the effects of varying degrees of interaction between the agent and experts
in Section 4.4. A final summary of this work and directions for future research are provided in Chapter
5.
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Chapter 2

Background and Related Work

2.1 Reinforcement Learning and Single-Stage Decision Problems

Reinforcement Learning (RL) is a field of machine learning in which decision-making entities, known as
agents, learn how to interact with an environment in order to maximise some cumulative reward signal
[Sutton and Barto 2018]. Of the many types of RL problems, this research concerns itself with single-
stage decision problems (SSDPs), also known as contextual bandits [Langford and Zhang 2007], with
discrete states and actions. In this setting, the agent observes some state s ∈ S (Algorithm 1, line 3),
selects some action a ∈ A (Algorithm 1, line 4), and receives some reward or utility r(s, a) ∈ R from
the environment (Algorithm 1, line 5). Each round of observation, action-selection and environment
feedback is referred to as a trial, and each trial is independent from previous trials.

The medical diagnosis example from the previous chapter can be posed as an SSDP, with the set of
observable symptoms and medical history forming the state space, the set of available treatments forming
the action space, and the reward signal being a function of the patient’s overall health, whether or not
they have experienced negative side-effects, etc. The frail-care assistance robot example (also from the
previous chapter) can also be posed as an SSDP, with each state being composed of the observations
made by the robot. Unlike the medical diagnosis example, the action space here is made up of high-level
strategies, rather than low level actions such as joint angles and motor velocities. In this example, the
reward could be related to the well-being of the patient.

A policy π : S → A is a function that maps each state to an action, and the goal of an agent within
an SSDP is to learn the optimal policy

π∗ = argmax
π

EU(π(s)|s) ∀s ∈ S,

whereEU(a|s) denotes the expected utility (i.e. expected reward) of choosing an action a in state s. The
expected utility function is typically not given, and must be learned by the agent through its interactions
with the environment (see Section 2.1.2).

The SSDP framework is provided in Algorithm 1.

2.1.1 Representing Single-Stage Decision Problems

Before we can address the problem of learning an optimal policy for an SSDP, it is important to discuss
how SSDPs can be represented by software systems. Recall that an SSDP trial involves observing a
state s ∈ S, selecting an action a ∈ A and receiving a reward r(s, a) ∈ R. Assuming that S and A are
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Algorithm 1 Single Stage Decision Problem
1: procedure STANDARD SSDP(environment,N ) . N = number of trials
2: for t ∈ [0, ..., N − 1] do
3: st ←sample state(environment) . environment picks state
4: at ←act(st) . agent picks action (e.g. Algorithm 2)
5: rt ←execute action(at, environment) . environment returns reward
6: learn(st, at, rt) . agent learns (e.g. Algorithm 2)

discrete, a simple approach to representing an SSDP is to create a table of size |S| × |A| which maps
each state-action pair 〈s, a〉 to an expected utility EU(a|s).

Such an approach is particularly useful for an agent attempting to solve an SSDP. The agent can
maintain an estimate Q(s, a) ≈ EU(a|s), and with each trial t, can update the value for Q(st, at)
using the reward rt [Sutton and Barto 2018]. Such an approach is less useful if one is simulating an
SSDP environment, as this requires knowing the distribution of states and the tabular approach makes
the assumption that all states are equally likely to occur.

A more complex approach to representing SSDPs involves Bayesian networks (BN), a type of prob-
abilistic graphical model representing a set of variables Z , consisting of a structure G and parameters
Θ [Pearl 1988]. The structure G is a directed acyclic graph (DAG) whose vertices represent variables
and whose directed edges represent conditional dependencies between these variables. Thus if the edge
(Zi, Zj) ∈ G, then Zj is conditionally dependent on Zi. More precisely, if PaGZi

denotes the parents
of Zi in G and NDGZi

denotes the non-descendants of Zi in G, then Zi is conditionally independent
of NDGZi

given PaGZi
[Koller and Friedman 2009]. The parameters θZi ∈ Θ define the conditional

probability distributions (CPDs) θZi = P (Zi|PaGZi
).

A BN allows for a compact representation of the joint probability distribution overZ and for an easy
visualisation of the conditional dependencies present between variables inZ . An example BN, complete
with graphical structure and CPDs (given as tables), is provided in Figure 2.1. In this example, the
variables upon which each variable is conditionally dependent are explicitly clear (e.g. P (WetGrass)
can be determined given only the values of Sprinkler and Rain).

Figure 2.1: A famous example of a Bayesian network, illustrating the compact representation afforded
by exploiting the conditional dependencies between variables [Norvig and Russell 1994].

An influence diagram (ID), alternately known as a decision network, is a type of Bayesian network
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whose set of variables Z can be partitioned into three disjoint sets Z = X ∪ D ∪ U , where X denotes
the set of state or chance variables, D denotes the set of action or decision variables, an assignment
of which functions as an action, and U denotes the set of reward or utility variables, the sum of whose
values adds up to reward returned by the environment [Howard and Matheson 2005; Koller and Friedman
2009].

For each action variable D ∈ D, the parent set PaGD denotes the observations made before deciding
on a value for D. A common convention is to use edges between action variables to denote the order in
which these variables are assigned values. For example, the edges (D1, D2) and (D2, D3) imply the
ordering D1 → D2 → D3. For an ID to be used to represent an SSDP, it is required that only a single
round of observation and decision-making occurs, and thus there cannot exist a state variable X ∈ X
such that X has action variables as both descendants and ancestors. The set B ⊆ X denotes the set of
state variables observed before decision-making, an assignment of which comprises the state, whereas
the set O ⊆ X (which does not share any variables with B), denotes the set of state variables observed
after decision-making, which can serve to add noise to the final utility [Innes and Lascarides 2019].

In an ID, every state variable X ∈ X is associated with a CPD θX = P (X|PaGX) and every
utility variable U ∈ U is associated with a function U(PaGU ) which maps to a real number [Koller and
Friedman 2009]. The sum of each U(PaGU ) is the total utility, which the agent seeks to maximise.

For example, a version of the medical diagnosis example, represented as an ID structure, is given
in Figure 2.2. In this example, the state is composed of three variables in B (RareCondition, Symptom1
and Symptom2), the action is composed of two variables in D (Treatment1 and Treatment2), and the
reward is composed of a single utility function in U (Reward), with a degree of stochasticity provided by
the two variables in O (SideEffect and PatientHealth). The patient’s health is dependent on the choice
of treatments and the symptoms exhibited by the patient, thus Symptom1, Symptom2, Treatment1 and
Treatment2 are all parents of PatientHealth. Similarly, the presence of a harmful side-effect is dependent
on whether or not a particular treatment (represented by Treatment1) has been administered and whether
or not the patient has a rare condition, and thus RareCondition and Treatment1 are parents of SideEffect.
The edge (Treatment1,Treatment2) indicates that Treatment1 is assigned a value by the agent before
Treatment2.

Figure 2.2: The structure of a simple version of the medical diagnosis example as an influence diagram.
As per convention, oval nodes denote state variables, rectangular nodes represent action variables, and
diamond-shaped nodes represent utility variables.

When used to simulate an environment, an ID can sample a new state by assigning values to each
variable B ∈ B using the forward sampling algorithm, which operates by assigning values to each
variable in B in succession, starting with root nodes (variables with no parents) and only assigning a
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value to a variable if all of its parents have been assigned values [Koller and Friedman 2009]. Once
the agent has assigned values to each D ∈ D, forward sampling can be used again to assign values to
the remaining variables in O. The value of each utility variable in U can easily be determined using its
corresponding utility function and the total utility can then be calculated as the sum of each value.

Given a G, ΘX ∀X ∈ X and U(PaGU ) ∀U ∈ U , the variable elimination algorithm can be used
to calculate the optimal policy, and thus the optimal assignments for eachD ∈ D, for each s ∈ S [Zhang
and Poole 1994]. The algorithm operates by working backwards in an ordering of action variables, and
for each D ∈ D, it finds the value that maximises the total utility for each possible assignment of PaGD.
Using this new maximum factor, the algorithm can be recursively called until each action variable has
an optimal value for each parent assignment. These factors can be used to construct an optimal decision
function for each action variable, all of which comprise the optimal policy [Poole and Mackworth 2010].

In principle, an agent can maintain their own ID to model an environment, updating estimates for
the structure and parameters of the ID as it interacts with the environment. However, learning a structure
and associated CPDs is not a trivial task, and lies outside the scope of this research. Thus, in this work,
IDs are used to simulate environments and provide “ground truth” models to simulated experts and true
policy agents (see Sections 4.1.1, 4.1.2 and 4.1.3), while other agents use a tabular estimate Q(s, a) to
represent the environment (see Sections 2.1.2 and 4.1.2).

2.1.2 Solving Single-Stage Decision Problems

Having discussed how an agent might represent an SSDP, we now turn our attention to the problem
of learning an optimal policy in order to maximise the reward obtained from interacting with an envi-
ronment. As discussed in the previous section, an agent can represent an SSDP environment using a
function Q(s, a) ≈ EU(a|s), which, in the context of learning to solve a single-stage decision function,
is referred to as an action-value function [Sutton and Barto 2018].

Suppose in trial t the agent observes state st, selects action at and receives reward rt. At the end of
this trial, the agent can update the action-value function using the following update rule (see Algorithm
2)

Q(st, at)← Q(st, at) + α(rt −Q(st, at)), (2.1)

where α ∈ (0, 1] is the step-size parameter and controls the rate at which the agent learns [Sutton and
Barto 2018]. For stationary problems, α is typically assigned the value of 1

k(s,a) , where k(s, a) is the
number of times the state-action pair (s, a) has been encountered. As this is always calculated at the end
of a trial, k(s, a) ≥ 1.

A common strategy to ensure that an agent’s knowledge of the environment is sufficient to learn the
optimal policy is ε-greedy exploration, in which the agent maintains a parameter ε ∈ [0, 1] and, after
observing state st, with probability ε the agent selects an action fromAwith uniform random probability
(known as “exploration”, see Algorithm 2, line 4) [Sutton and Barto 2018]. Otherwise, with probability
1 − ε, the agent selects the action that maximises Q(st, a) (known as “exploitation”, see Algorithm 2,
line 6). The value of ε can be fixed or can decay over the course of learning.

The action-value ε-greedy algorithm for SSDPs is outlined in Algorithm 2.

Other popular algorithms for solving SSDPs include LinUCB [Li et al. 2010], NeuralBandit [Alle-
siardo et al. 2014], and Contextual Thompson Sampling [Agrawal and Goyal 2013].
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Algorithm 2 Baseline Approach for Solving SSDPs
1: procedure ACT(st,ε)
2: p←random() . random value in [0, 1]
3: if p < ε then
4: return random a ∈ A . agent “explores”
5: else
6: return argmax

a
Q(st, a) . agent “exploits”

7: procedure LEARN(st,at,rt)
8: Q(st, at)← Q(st, at) + α(rt −Q(st, at))

2.2 Assisted Reinforcement Learning

As stated in Chapter 1, it is desirable for an SSDP algorithm to converge to the optimal policy π∗ in
as few trials as possible. This improved sample efficiency is especially desirable when problems are
complex or when gathering data is difficult. One approach to improving convergence in this regard is to
incorporate external information in the learning process. In this section, we discuss methods by which
this incorporation of external information can be achieved.

The assisted reinforcement learning (ARL) framework encompasses a wide range of RL meth-
ods that incorporate information external to the environment in the learning process [Bignold et al.
2020]. Some examples of ARL approaches include heuristic reinforcement learning [Bianchi et al.
2004], reinforcement learning from demonstration [Taylor and Chernova 2010] and transfer learning in
reinforcement learning [Taylor and Stone 2009]. Of particular relevance to this research is interactive
reinforcement learning (IRL), in which an expert (either human of software-based) provides information
to the agent during the learning process, usually as a response to the behaviour of the agent [Thomaz et
al. 2005].

It is important to note that the ARL framework encompasses the full, episodic RL problem, whereas
this work is only concerned with SSDPs. However, as SSDPs form a subset of RL problems, it is
nevertheless useful to consider approaches to incorporating external information in the general RL case
as these approaches can transfer to the specific case of SSDPs.

Bignold et al. [2020] identify several components across which different ARL methods can vary,
as depicted in Figure 2.3. The first of these is the information source. In IRL approaches, this can
be a human expert or a software expert that draws advice from either a “ground truth” model of the
environment or a learned policy.

The second component is temporality, which refers to when and how often information is trans-
ferred from the information source to the agent. IRL methods are characterised by interactive assistance,
in which information can be transferred multiple times throughout the learning process. When exactly
an expert offers advice is dependent on the expert itself. In order to simulate the cost of communication,
an expert may choose to budget advice by limiting the number of times information can be transferred
[Torrey and Taylor 2013]. When budgeting advice, different strategies may be employed to maximise
its usefulness. Such strategies include giving advice as early as possible, saving advice for more im-
portant states, or offering advice in response to suboptimal behaviour on the part of the agent [Torrey
and Taylor 2013]. Advice for a given state can be given before the agent acts in that state or afterwards,
as a corrective measure. Although both approaches are common, we focus on the latter in this work
(see Algorithm 3, line 6), as this approach allows an expert to assess the performance of an agent when
deciding whether or not to offer advice.
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Figure 2.3: The components of the ARL framework [Bignold et al. 2020].

The agent modification component refers to the method by which the information source modifies
the behaviour of the agent [Bignold et al. 2020]. IRL methods can be classified based on the type of ad-
vice the expert gives. In reward-shaping approaches [Knox and Stone 2009; Gimelfarb et al. 2018], the
expert modifies the reward signal provided to the agent (e.g. by providing positive or negative feedback
when the agent selects certain actions). In policy-shaping approaches [Fernández and Veloso 2006; Grif-
fith et al. 2013], the expert modifies the agent’s policy, typically by advising an action for a given state
and having this action override the agent’s policy whenever that state is encountered. Both approaches
are preferred for different situations and domains. For this research, we focus on policy-shaping, as
state-action advice can be more easily elicited from human experts in our domains of interest (particu-
larly the medical diagnosis and frail-care assistance domains), requires minimal similarity between the
agent and expert [Torrey and Taylor 2013], and is more robust to infrequent and inconsistent feedback
[Griffith et al. 2013].

The advice interpretation and advice structure components refer to the structure of the advice and
how it is understood by the agent. A common approach in policy-shaping IRL is to directly advise which
actions are optimal for a given state [Griffith et al. 2013]. By advising the state-action pair 〈s, a〉, the
expert is asserting that

EU(a|s) ≥ EU(a′|s) ∀a′ ∈ A, (2.2)

or, in other words, that a is the optimal action in state s.

Finally, the external model component may store information passed to the agent and model the
information source [Bignold et al. 2020]. These models can be retained, meaning information is stored
for later use and can be referred to by the agent, or immediate, meaning the information is used by the
agent and then discarded.

The framework for learning SSDPs with interactive state-action advice (with advice being given
after an agent acts) is provided in Algorithm 3, and can be compared to the standard SSDP loop presented
in Algorithm 1. How the agent makes decisions and how it learns given the advice it receives varies
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greatly between approaches.

Algorithm 3 Single Stage Decision Problem with Interactive Advice
1: procedure INTERACTIVE SSDP(environment,N, e) . N = number of trials, e = expert
2: for t ∈ [0, ..., N − 1] do
3: st ←sample state(environment) . environment picks state
4: at ←act(st) . agent picks action, potentially utilising earlier advice
5: rt ←execute action(at, environment) . environment returns reward
6: a

(e)
t ←advise(e, st, at, rt) . expert offers advice (or offers no advice)

7: learn(st, at, rt, a
(e)
t ) . agent learns, potentially utilising advice

2.3 Related Work

Most (but not all) approaches in ARL assume the advice to be coming from a single, infallible expert.
However, this assumption does not always hold, especially when the expert is human [Efthymiadis et al.
2013]. Suboptimal advice could be the result of communication error, erroneous domain knowledge or
a malicious expert. Furthermore, incorporating advice from multiple experts introduces the possibility
of two or more experts offering contradicting advice, requiring the agent to choose which advice is more
likely to be correct [Shelton 2000]. The problems of incorporating advice from unreliable experts and
incorporating advice from multiple experts are considered open questions in ARL [Bignold et al. 2020].

Several approaches deal with these problems in different ways. Gimelfarb et al. [2018] combine
reward-shaping advice from multiple experts as a weighted sum of potential functions, where the weights
are updated as the agent learns. Griffith et al. [2013] account for incorrect advice by modelling the
probability of an expert giving correct advice (here in the form of a label of “right” or “wrong” rather
than explicitly telling the agent what to do) with a single, static parameter C ∈ [0, 1], where C = 0
corresponds to always giving suboptimal advice andC = 1 corresponds to always giving optimal advice.
Both approaches are incompatible with the state-action advice we consider in this work. Nevertheless,
these approaches contain elements which are applicable to the state-action advice we consider. The
combination of advice weighted by the reliability of each expert forms the basis of the decision-making
process outlined in Section 3.2.2, and the model of reliability as the probability of advising optimally is
discussed in Section 3.2.1.

Fernández and Veloso [2006] account for potential unreliability in a transferred policy by initially
relying on the policy with some probability ψ, and subsequently decaying ψ over time. Although the
original approach considers advice given at the beginning of the learning process rather than during the
process, this approach can be adapted to the setting this work considers. A comparison of performance
with a variety of experts can be found in Section 4.2.2.

Other approaches that consider unreliable information (albeit with different temporalities and types
of advice) include the Normalised Actor-Critic algorithm, an RL from demonstration approach which
refines an initial policy obtained from potentially imperfect demonstrations [Gao et al. 2018], and the
joint learning framework of Keswani et al. [2021], a classification algorithm, in which a classifier is
learnt together with a deferrer which learns when to defer to one or more experts, which may have
incorrect domain knowledge or biases.
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Chapter 3

Methodology

In the previous chapter we discussed a number of key concepts relating to this work, as well as related
work in the field of ARL. In this chapter, we present the contributions of this work and outline how
the CLUE framework functions. In Section 3.1, we introduce the problem area and present important
definitions and assumptions. In Section 3.2, we provide a high-level outline of CLUE and discuss each
contribution in detail. In Section 3.3, we discuss how CLUE fits into the ARL framework described in
Section 2.2. Finally, in Section 3.4, we present Theorem 1, which shows the conditions under which a
CLUE agent will have increased probability of exploring optimally in a simple environment.

3.1 Introduction

As stated in the previous chapter, it is desirable for an SSDP algorithm to converge to the optimal
policy with as few trials as possible, as this can aid in solving complex tasks, in situations where data
acquisition is difficult or where safety and ethical concerns arise. In Section 2.2, we discussed Assisted
Reinforcement Learning (ARL) - a family of approaches to tackling this problem which incorporate
external information (such as advice given by an expert advisor) in the learning process. It has been
shown that the rate at which agents learn can be improved when learning with the assistance of a reliable
expert [Torrey and Taylor 2013]. Indeed, most ARL approaches assume this advice to be coming from
a single, infallible expert. However, this assumption may not hold for all scenarios.

The aim of this research, therefore, is to devise an algorithm that can solve an SSDP with the
advice from multiple, potentially unreliable experts. Such an algorithm should benefit from the advice
of reliable experts, but be robust against incorrect advice.

In order to accomplish this, we introduce some key definitions. Recall from Equation 2.2 that the
state-action advice 〈s, a〉 asserts that

EU(a|s) ≥ EU(a′|s) ∀a′ ∈ A, (3.1)

where EU(a|s) denotes the expected utility (i.e. expected reward) from performing action a in state s,
A denotes the action-space, and s is some state in S, where S denotes the state-space.

Definition 1. The advice 〈s, a〉 is correct if it satisfies the inequality in Equation 3.1. Otherwise, it is
incorrect.

From this definition, we can define what it means for an expert to be reliable.

Definition 2. An expert is reliable if it offers correct advice for all s ∈ S. Otherwise, the expert is
unreliable.
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3.1.1 Assumptions

In order to tackle the problem of policy-learning in SSDPs with multiple, potentially unreliable experts,
we make two key assumptions.

Assumption 1. An expert is uniformly reliable across S.

In other words, for any two states s1 ∈ S and s2 ∈ S, the probability of an expert offering correct
advice for either state is equal. In general, this assumption does not hold for all domains. For example,
a doctor may specialise in one branch of medicine and they may be more reliable for states within their
specialisation than for those outside of that region. However, relaxing this assumption requires dividing
the state space into domains of expertise, which could range in size from a single state to the entire state
space and could potentially overlap with each other. This division is non-trivial, and lies outside the
scope of this research. Thus the problems considered in this research are assumed to be small enough in
scope (but not necessarily in size) that a single expert could have expertise over the entire state space.

Assumption 2. An expert is uniformly reliable across all trials.

In other words, the probability that an expert gives correct advice does not change from trial to trial.
This may not hold for all situations. For example, a human expert may get tired and start making more
mistakes in later trials. A malicious expert may attempt to sabotage an agent’s performance by giving
it correct advice when such advice is less useful, and giving incorrect advice where stakes are high.
However, in most cases where the expert is consistent and helpful, we expect the assumption to hold.

3.2 Cautiously Learning with Unreliable Experts

Having discussed important definitions and assumptions, we now present CLUE (Cautiously Learning
with Unreliable Experts), an algorithm for learning SSDPs with the policy advice of multiple, potentially
unreliable experts. CLUE involves three actors: an environment, an agent and a panel E of one or more
experts. The high-level component view of CLUE is provided in Figure 3.1.

Figure 3.1: A high-level overview of CLUE, showing the interactions between the environment, the
agent and expert(s). Components depicted in red represent contributions made by this research.

The environment is identical to any SSDP environment, as discussed in Section 2.1. Namely, for
trial t, it samples state st, accepts action at from the agent and returns reward rt. At the end of the trial,
each expert e in panel E receives 〈st, at, rt〉 and may offer their own advice, 〈st, a(e)〉 on what action
the agent should have taken this trial (Algorithm 6, line 6). How exactly an expert decides whether or
not to offer advice and which advice to give differs between experts; our approach is outlined in Section
4.1.3 (Algorithm 7).
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The agent is composed of three components which facilitate decision making and policy learning.
The first of these components is a learning algorithm, which uses the information 〈st, at, rt〉 to learn a
policy. The CLUE framework allows for any SSDP learning algorithm to be used. In this work, we use
an action-value method as discussed in Section 2.1.2 (Algorithm 2).

The second component, and one of the contributions of this research, is a model of the reliability of
each expert (see Section 3.2.1). This model is necessary for learning which pieces of advice are to be
followed and which are to be ignored. When an expert offers advice at the end of a trial, the agent uses
its own information about the environment (such as a Q function) to evaluate the advice and update the
model (see Section 3.2.3, Algorithm 5).

The third component, and another contribution of this research, is a decision making process which
uses the information learned by the learning algorithm and the models of each expert to select an action
for a state when exploring, given any advice it has previously received for that state (see Section 3.2.2,
Algorithm 4).

Having provided a high-level description of CLUE, we now discuss each of the aforementioned
contributions in greater detail.

3.2.1 Modelling Reliability

The first contribution we address is how an agent working within the CLUE framework models the
reliability of each expert. Intuitively, we can think of an expert as being unreliable to some degree.
For example, an expert that offers correct advice in 95% of trials, while still unreliable according to
Definition 2, is more reliable than an expert that is always wrong.

Following Griffith et al. [2013], we model an expert’s reliability, ρ ∈ [0, 1], as the probability of the
expert giving correct advice, where ρ = 0 corresponds to an expert whose advice is always wrong and
ρ = 1 corresponds to a reliable expert. Rather than maintaining a static value for each expert, we can
model a probability distribution of the value of ρ using a Beta distribution

Betaρ[α, β] =
Γ(α+ β)

Γ(α)Γ(β)
ρα−1(1− ρ)β−1, (3.2)

whose shape is determined by the parameters α, β > 0 [Owen 2008]. These parameters can be thought
of as counts, with α and β recording the number of times correct or incorrect advice was given respec-
tively.

The best estimate of the reliability of an expert is therefore the expected value

E[ρ] =
α

α+ β
. (3.3)

Thus, for each expert e ∈ E, the agent maintains a distribution Betaρ(e) [α
(e), β(e)] from which the

reliability estimate E[ρ(e)] is calculated.

3.2.2 Making Decisions

We now turn our attention to the problem of how E[ρ] can inform the decision-making process. Suppose
that, at the start of trial t, the agent observes state st and recalls any advice that some subset Et ⊆ E of
experts offered for state st in trials [0, ..., t − 1]. The agent decides whether to “exploit” - selecting an
action according to its policy to maximise reward - or “explore” - selecting some other action to improve
estimates of expected reward. If exploring, the agent must choose between randomly selecting an action
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or following advice, in which case it must choose which advice to follow. By incorporating advice into
exploration, but not exploitation, the agent can still benefit from the advice it receives while not baking
this advice into its learned policy, thus allowing it to surpass the performance of an unreliable expert.

We note that there are three cases conditioned on |Et|.

Case 1: Et = ∅. In this case, no advice has been offered for st, such as will happen when t = 0,
and thus the agent must act without any advice. The decision-making strategy employed in this research
is ε-greedy exploration, as discussed in Section 2.1.2.

Case 2: |Et| = 1. In this case, a single expert e has offered advice for st. As E[ρ(e)] is the
best estimate of the reliability of the expert, we employ it as a parameter in a similar vein to ε in ε-
greedy methods [Sutton and Barto 2018] or ψ in the probabilistic policy reuse algorithm [Fernández and
Veloso 2006], so that, with probability E[ρ(e)] the agent follows the advice offered by expert e, and with
probability 1− E[ρ(e)] the agent acts as in Case 1. This allows for a trade-off between following advice
and exploring as normal, where the former is more likely if the agent’s estimate of the expert’s reliability
is higher.

Case 3: |Et| > 1. In this case, multiple experts have offered (potentially conflicting) advice for st.
A simple approach might be to pick the expert with the highest value of E[ρ(e)] and ignore all others,
thus reducing this case to Case 2. However, this approach eliminates the information that could be
provided by other, less reliable experts, such as information revealed by consensus among experts (the
“wisdom of the crowd” [Yi et al. 2012]) or the information provided by adversarial experts (experts who
are almost always wrong, thus informing the agent which actions not to take).

To take advantage of the information provided by all experts, we instead employ a Bayesian ap-
proach to calculate the probability of each action being optimal given the available advice, inspired by
similar approaches in crowd-sourced data labelling [Burke and Klein 2020] and potential-based reward
shaping [Gimelfarb et al. 2018]. Let a∗ denote the optimal action for state st, and v(e)

t denote the advice
utterance 〈st, a(e)

t 〉 given by expert e for st, with Vt denoting the set {v(e)
t |e ∈ Et}. Thus, our aim is to

calculate P (a = a∗|Vt) for each a ∈ A. By Bayes’ rule,

P (a = a∗|Vt) =
P (Vt|a = a∗)P (a = a∗)∑|A|

k=0 P (Vt|ak = a∗)P (ak = a∗)
. (3.4)

We now assume that each expert gives advice independently of every other expert, i.e. P (v
(ei)
t ∩

v
(ej)
t |a = a∗) = P (v

(ei)
t |a = a∗)P (v

(ej)
t |a = a∗) for any arbitrary pair of experts ei and ej . Under this

assumption, Equation 3.4 can be expressed as

P (a = a∗|Vt) =

∏
e∈Et

P (v
(e)
t |a = a∗)P (a = a∗)∑|A|

k=0

∏
e∈Et

P (v
(e)
t |ak = a∗)P (ak = a∗)

,

which, under the assumption that the prior probability P (a = a∗) is equal for all a ∈ A (a reasonable
assumption to make in the absence of a more informative prior), reduces to

P (a = a∗|Vt) =

∏
e∈Et

P (v
(e)
t |a = a∗)∑|A|

k=0

∏
e∈Et

P (v
(e)
t |ak = a∗)

. (3.5)

All that remains in order to calculate P (a = a∗|Vt) is to determine the value of P (v
(e)
t |a = a∗). As

discussed in Section 3.2.1, E[ρ(e)] is the probability that expert e offers correct advice for a given state.
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Thus, under the assumption that if an expert does not advise a correct action, they select a suboptimal
action in A \ {a∗} with uniform probability [Masegosa and Moral 2013],

P (v
(e)
t |a = a∗) =

{
E[ρ(e)] v

(e)
t advises a

1−E[ρ(e)]
|A|−1 v

(e)
t does not advise a

(3.6)

Substituting Equation 3.6 into Equation 3.5, we can calculate the probability of each action a ∈ A being
optimal, and set abest = argmax

a
P (a = a∗|Vt). As in Case 2, we use P (abest = a∗|Vt) as a parameter,

selecting action abest with probability P (abest = a∗|Vt) and acting as in Case 1 otherwise. Indeed,
following this procedure for |Et| = 1 results in an identical process to that outlined for Case 2, and thus
we need only consider cases 1 and 3.

Of course, the above formulation assumes that E[ρ(e)] accurately models the reliability of expert e,
which may not always be the case, as discussed in Section 3.2.3. In particular, the over-estimation of the
reliability of particularly unreliable experts may result in the over-selection of suboptimal actions. Erring
on the side of caution, we introduce a threshold parameter T ∈ [0, 1], such that if P (abest = a∗|Vt) < T ,
the agent acts without advice. Thus the agent only follows advice if it is sufficiently confident that it is
correct.

The decision-making process outlined above is presented as pseudocode in Algorithm 4. This can
be compared and contrasted with the unassisted decision-making process provided in Algorithm 2.

3.2.3 Updating Reliability Estimates

Finally we discuss how each expert’s reliability estimates are updated as they advise the agent and as
the agent interacts with the environment. After selecting some action at, the agent receives reward rt
and some subset of experts offer their advice for state st. The learning algorithm then uses 〈st, at, rt〉
to update its policy. The agent must now update P (ρ(e)) for each expert (if any) that offered its advice
for state st. Suppose expert e advises action a(e). Using the agent’s own learned information (e.g. a Q
function), it can estimate EU(a|st) ∀a ∈ A to determine if a(e) is the optimal action for st. Early in
training the agent’s own understanding of the environment is limited, and so these evaluations will be
poor. As the agent learns however, the accuracy of these evaluations will improve. Poor estimates may
also be the result of violating the assumptions listed in Section 3.1.1.

Across t trials, with the advice of expert e having been evaluated n(e) times, let x(e) denote the
number of optimal evaluations. Thus n(e) − x(e) denotes the number of suboptimal evaluations. For
ease of readability we omit the superscript denoting expert e. In order to update the reliability estimate,
we wish to set the beta distribution Betaρ[α, β] to be equal to P (ρ|x), which by Bayes’ rule equals the
following:

Betaρ[α, β] = P (ρ|x) =
P (x|ρ)P (ρ)∫ 1

0 P (x|ρ)P (ρ)dρ
. (3.7)

As x and n − x represent counts of correct and incorrect evaluations respectively, a natural choice
is to model the likelihood P (x|ρ) as a binomial distribution [Etz 2018]

P (x|ρ) = Bx[n, ρ] =

(
n

x

)
ρx(1− ρ)n−x. (3.8)

As we wish to model the posterior P (ρ|x) as a beta distribution, we can model the prior P (ρ) as a
beta distribution
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Algorithm 4 Acting with Advice from a Panel of Potentially Unreliable Experts

1: procedure ACT WITH ADVICE(st,t,T ,ε,E[ρ(e)])
2: p←random() . random value in [0, 1]
3: if p < ε then . agent “explores”
4: Et ← {e|e advised for st in τ ∈ [0, ..., t− 1]}
5: if |Et| = ∅ then
6: return random a ∈ A
7: else
8: for a ∈ A do
9: La ← 0

10: for e ∈ Et do
11: if expert e advised (st, a) then
12: La ← La × E[ρ(e)]
13: else
14: La ← La × 1−E[ρ(e)]

|A|−1

15: for a ∈ A do
16: P (a = a∗)← La∑|A|

i=0 Lai

17: abest ← arg max
a

P (a = a∗)

18: if P (abest = a∗) < T then
19: return random a ∈ A . act randomly
20: else
21: q ←random()
22: if q < P (abest = a∗) then
23: return abest . select the best action given received advice
24: else
25: return random a ∈ A . act randomly
26: else . agent “exploits”
27: return arg maxaQ(st, a)

P (ρ) = Betaρ[α0, β0] =
Γ(α0 + β0)

Γ(α0)Γ(β0)
ρα0−1(1− ρ)β0−1, (3.9)

which is conjugate to the binomial likelihood P (x|ρ) [Etz 2018]. The prior parameters α0 and β0 can be
thought of as prior counts of x and n − x respectively. Therefore, α0 may be thought of as the number
of times (prior to the start of training) that the expert’s advice was evaluated to be optimal, and β0 the
number of times the expert’s advice was evaluated to be suboptimal.

Substituting Equations 3.8 and 3.9 into Equation 3.7, we arrive at

P (ρ|x) =
Bx[n, ρ]Betaρ[α0, β0]∫ 1

0 Bx[n, ρ]Betaρ[α0, β0]dρ
(3.10)

=

(
n
x

)
ρx(1− ρ)n−x Γ(α0+β0)

Γ(α0)Γ(β0)ρ
α0−1(1− ρ)β0−1∫ 1

0

(
n
x

)
ρx(1− ρ)n−x Γ(α0+β0)

Γ(α0)Γ(β0)ρ
α0−1(1− ρ)β0−1dρ

=
ρx+α0−1(1− ρ)n−x+β0−1∫ 1

0 ρ
x+α0−1(1− ρ)n−x+β0−1dρ

.
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Now, because a beta distribution is a valid probability distribution,

1 =

∫ 1

0
Betaρ[α, β]dρ

=

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)
ρα−1(1− ρ)β−1dρ,

and thus

∫ 1

0
ρα−1(1− ρ)β−1dρ =

Γ(α)Γ(β)

Γ(α+ β)
. (3.11)

Substituting Equation 3.11 into Equation 3.10,

P (ρ|x) =
ρx+α0−1(1− ρ)n−x+β0−1

Γ(x+α0)Γ(n−x+β0)
Γ(x+α0+n−x+β0)

(3.12)

=
Γ(n+ α0 + β0)

Γ(x+ α0)Γ(n− x+ β0)
ρx+α0−1(1− ρ)n−x+β0−1

= Betaρ[x+ α0, n− x+ β0]

Substituting the parameters of Equation 3.12 into Equation 3.3, we can calculate the expected value

E[ρ] =
x+ α0

n+ α0 + β0
.

Thus, as the agent encounters states for which expert e has given advice, it need only update n(e)

and x(e) and recompute E[ρ(e)], which can be used in future decision-making.

The update process provided above is presented as pseudocode in Algorithm 5.

Algorithm 5 Updating Unreliability Estimates
1: procedure UPDATE ESTIMATES(st,at,rt,Vt)
2: E′t ← {e|e advised for st in τ ∈ [0, ..., t]}
3: for e ∈ E do
4: if e advised some action in trial t then
5: store advice(e,st,v

(e)
t )

6: if e ∈ E′t then
7: best reward← maxaEU(st, a)

8: advice reward← EU(st, v
(e)
t )

9: if advice reward ≥ best reward then
10: α

(e)
t+1 ← α

(e)
t + 1

11: β
(e)
t+1 ← β

(e)
t

12: else
13: α

(e)
t+1 ← α

(e)
t

14: β
(e)
t+1 ← β

(e)
t + 1

15: E[ρ
(e)
t+1]← α

(e)
t+1

α
(e)
t+1+β

(e)
t+1
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3.3 CLUE Framework

Having discussed each of the core components of the CLUE framework in the previous sections, we now
present the CLUE framework in Algorithm 6, which can be viewed as an extension of the interactive
reinforcement learning (IRL) SSDP algorithm (Algorithm 3) that allows for multiple, potentially unreli-
able experts through the Bayesian methods of decision-making (Algorithm 4) and reliability estimation
(Algorithm 5).

Algorithm 6 Cautiously Learning with Unreliable Experts
1: procedure CLUE(environment,E,N ) . E = panel of experts, N = number of trials
2: for t ∈ [0, ..., N − 1] do
3: st ←sample state(environment) . environment picks state
4: at ←select action(st) . Algorithm 4
5: rt ←execute action(at, environment) . environment returns reward
6: advicet ←panel advise(E, st, at, rt) . e.g. Algorithm 7
7: learn(st, at, rt) . e.g. Algorithm 2
8: update estimates(st, at, rt, advicet) . Algorithm 5

Although the CLUE framework as presented in this chapter is only equipped for SSDPs and not full,
episodic RL problems, it can nevertheless be analysed through the lens provided by the ARL framework
of Bignold et al. [2020] as outlined in Section 2.2, and can be compared to other IRL methods. Such
an analysis may prove useful in future work extending the CLUE framework to solve full RL problems
(see Section 5.1).

In contrast to most other IRL approaches, the information source in the CLUE framework can
consist of multiple experts, each of which is not assumed to be reliable (although they are assumed to
be consistent, as discussed in Section 3.1.1). Due to the policy-shaping, state-action advice adopted in
this work, the experts advising the agent need only share a common action-space, and can vary in how
they represent the environment. Both human and software-based experts can be employed in the CLUE
framework.

The temporality of the CLUE framework is typical of IRL methods, as advice is given interactively
by the experts during learning [Thomaz et al. 2005]. As stated in Section 2.2, in this work we adopt the
approach of the experts advising the agent after it acts, so that the experts can assess the performance
of the agent before deciding whether or not to offer advice. In general however, experts can also offer
advice before the agent acts without requiring any significant modifications to the CLUE framework.

The advice interpretation and structure components of the ARL framework are also typical of
policy-shaping IRL approaches [Bignold et al. 2020]. Namely, each expert offers state-action advice
in the form described by Equation 3.1. The advice is given in a form readable by the agent (e.g. the
index of an action in A, an assignment of action variables in an influence diagram, etc.).

As with many other IRL approaches, a CLUE agent maintains a retained model of the information
source; storing all advice it receives for later reference. However, where it differs from other approaches
is that the agent maintains a separate model for each expert. These models not only store all advice
offered by each expert, but also maintain an estimate of the experts’ reliabilities, as described in Sections
3.2.1 and 3.2.3.

The type of agent modification exhibited by the CLUE framework is policy-shaping, which alters
the agent’s behaviour rather than the reward signal it receives or directly modifying internal components.
A CLUE agent alters its behaviour when exploring by calculating the probability of each action being
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optimal given the advice it has received and its estimates of experts’ reliabilities, and, with some degree
of randomness, selects the action with the highest probability, as described in Section 3.2.2.

3.4 Theoretical Analysis

In this section, we show the conditions for which CLUE, when exploring, will have a higher probability
of selecting the optimal action for a given state than some default unassisted exploration strategy, when
acting in an environment where |A| = 2 and being advised by a single expert that operates under the
following assumption.

Assumption 3. Assume an expert has a true reliability ρtrue ∈ [0, 1] such that, when giving advice,
it advises the optimal action with probability ρtrue and otherwise advises some suboptimal action with
probability 1−ρtrue

|A|−1 .

To do this, we define a function W (a) which represents the probability of selecting a given action
when exploring. For example, if selecting actions with uniform random probability, W (a) = 1

|A| ∀a ∈
A. We show the values of E[ρ] (the agent’s estimate of the reliability, which may or may not be accurate)
for which the probability of selecting the optimal action a∗ is greater than or equal to W (a∗), given W
and ρtrue.

To aid in the proof of this theorem (Theorem 1), we first prove Lemma 1, which shows the conditions
for which a CLUE agent is guaranteed to identify a given action as optimal.

Lemma 1. Suppose an environment with |A| = 2 and a panel consisting of a single expert. Let E[ρ]
denote the agent’s estimate of the reliability of the expert. For any given state the expert has advised for,
the optimal action a∗ will be identified as such by the agent if one of the following holds

• The expert advised a∗ and E[ρ] > 1
2

• The expert did not advise a∗ and E[ρ] < 1
2

If E[ρ] = 1
2 , the agent is equally as likely as not to identify a∗ as the optimal action.

Proof. From Equation 3.5, we have that

P (aj = a∗|Vt) =

∏
e∈Et

P (v
(e)
t |aj = a∗)∑|A|

k=0

∏
e∈Et

P (v
(e)
t |ak = a∗)

, (3.13)

which, given that |Et| = 1 and |A| = 2, reduces to

P (aj = a∗|Vt) =
P (v

(e)
t |aj = a∗)

P (v
(e)
t |a0 = a∗) + P (v

(e)
t |a1 = a∗)

. (3.14)

Without loss of generality, let a0 denote the optimal action for st. Substituting in Equation 3.6, Equation
3.14 is equal to

P (aj = a∗|Vt) =
P (v

(e)
t |aj = a∗)

E[ρ] + 1− E[ρ]

= P (v
(e)
t |aj = a∗), (3.15)

which is equal to E[ρ] if the expert advised aj and 1 − E[ρ] otherwise. Let abest denote the action that
maximises P (aj = a∗|Vt).
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We consider 2 cases.

Case 1: The expert has advised a0. Thus,

P (a0 = a∗|Vt) = E[ρ]

P (a1 = a∗|Vt) = 1− E[ρ].

P (a0 = a∗|Vt) > P (a1 = a∗|Vt) is therefore only true when E[ρ] > 1
2 , and thus the agent will identify

a0 as the optimal action if E[ρ] > 1
2 . If E[ρ] = 1

2 , the agent will do so with probability 1
2 .

Case 2: The expert has advised a1. Thus,

P (a0 = a∗|Vt) = 1− E[ρ]

P (a1 = a∗|Vt) = E[ρ].

P (a0 = a∗|Vt) > P (a1 = a∗|Vt) is therefore only true when E[ρ] < 1
2 , and thus the agent will identify

a0 as the optimal action if E[ρ] < 1
2 . If E[ρ] = 1

2 , the agent will do so with probability 1
2 .

Theorem 1. Suppose an environment with |A| = 2 and a panel consisting of a single expert. Let W (a)
denote the probability of selecting action a when exploring unassisted. Then the probability of a CLUE
agent selecting the optimal action a∗ when exploring is greater than or equal to W (a∗) if one of the
following holds

• E[ρ] = 1
2 and W (a∗) ≤ 1

2

• E[ρ] < 1
2 and W (a∗) ≤ 1− ρtrue

• E[ρ] > 1
2 and W (a∗) ≤ ρtrue

Proof. Let P (a) denote the probability of selecting action a. Let a(e) denote the action advised by the
expert. From the decision-making process described in Section 3.2.2, we have that

P (a∗) = E[ρ] + (1− E[ρ])W (a∗) if abest = a∗ (3.16)

P (a∗) = (1− E[ρ])W (a∗) if abest 6= a∗ (3.17)

We consider three cases.

Case 1: Let E[ρ] = 1
2 . From Equations 3.16 and 3.17, we have that

P (a∗) =
1

2
+

1

2
W (a∗) if abest = a∗

P (a∗) =
1

2
W (a∗) if abest 6= a∗

From Lemma 1, P (abest = a∗) = 1
2 = P (abest 6= a∗) and thus

P (a∗) =
1

2
(
1

2
+

1

2
W (a∗)) +

1

2
(
1

2
W (a∗))

=
1

4
+

1

2
W (a∗),

which is greater than or equal to W (a∗) if and only if W (a∗) ≤ 1
2 .

Case 2: Let E[ρ] < 1
2 . From Equations 3.16 and 3.17, and from Lemma 1, we have that

P (a∗) = (1− E[ρ])W (a∗) a(e) = a∗

P (a∗) = E[ρ] + (1− E[ρ])W (a∗) a(e) 6= a∗
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From Assumption 3, P (a(e) = a∗) = ρtrue and P (a(e) 6= a∗) = 1− ρtrue. Therefore,

P (a∗) = P (a(e) = a∗)(1− E[ρ])W (a∗)+

P (a(e) 6= a∗)(E[ρ] + (1− E[ρ])W (a∗))

= ρtrue(1− E[ρ])W (a∗)+

(1− ρtrue)(E[ρ] + (1− E[ρ])W (a∗))

= E[ρ](1− ρtrue) +W (a∗)(1− E[ρ]),

which is greater than or equal to W (a∗) if and only if E[ρ](1−W (a∗)− ρtrue) ≥ 0. As E[ρ] ≥ 0, it is
sufficient to prove that 1−W (a∗)− ρtrue ≥ 0.

1−W (a∗)− ρtrue ≥ 0

−W (a∗) ≥ ρtrue − 1

W (a∗) ≤ 1− ρtrue

Thus P (a∗) ≥W (a∗) if and only if W (a∗) ≤ 1− ρtrue.

Case 3: Let E[ρ] > 1
2 . From Equations 3.16 and 3.17, and from Lemma 1, we have that

P (a∗) = E[ρ] + (1− E[ρ])W (a∗) a(e) = a∗

P (a∗) = (1− E[ρ])W (a∗) a(e) 6= a∗

From Assumption 3, P (a(e) = a∗) = ρtrue and P (a(e) 6= a∗) = 1− ρtrue. Therefore,

P (a∗) = P (a(e) = a∗)(E[ρ] + (1− E[ρ])W (a∗))+

P (a(e) 6= a∗)(1− E[ρ])W (a∗)

= ρtrue(E[ρ] + (1− E[ρ])W (a∗)) + (1− ρtrue)(1− E[ρ]),

which is greater than or equal to W (a∗) if and only if E[ρ](ρtrue − W (a∗)) ≥ 0. As E[ρ] ≥ 0,
P (a∗) ≥W (a∗) if and only if W (a∗) ≤ ρtrue.

Theorem 1 shows that whether or not the probability of selecting the optimal action using CLUE
is higher than the probability of selecting the optimal action using some default exploration strategy W
is dependant on the true reliability ρtrue, the agent’s estimate of the reliability E[ρ] and the exploration
strategy W itself.

For a uniform random exploration strategy (W (a) = 1
|A| ∀a ∈ A), the implication of Theorem 1

is that there will be improved performance provided that the estimate E[ρ] is on the same side of 1
2 as

the true reliability ρtrue. For another exploration strategy, the improvement may increase or decrease
depending on the probability of selecting a∗ under that strategy.

Ultimately, Theorem 1 demonstrates that CLUE is a more effective exploration strategy provided
that E[ρ] is sufficiently close to ρtrue (see Section 4.3 for empirical results for the convergence of E[ρ]),
given Assumption 3 and |A| = 2.

In this chapter we discussed the problem of incorporating advice from multiple, potentially unreli-
able experts in the SSDP learning process, introduced the CLUE framework as a means of addressing
this problem, including a decision-making process for exploration and a means of modelling and up-
dating reliability estimates of experts, discussed how CLUE fits within the broader ARL framework of
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Bignold et al. [2020], and showed the theoretical conditions for CLUE having a higher probability of
acting optimally when exploring, given a particular model of expert and a simple action space.

All in all, the CLUE framework represents a novel approach to addressing two open questions in
ARL - the incorporation of multiple experts and the possibility of those experts being unreliable - within
the sub-problem of single-stage decision problems. The goal of this framework is to have an agent
that 1) can benefit from advice from reliable experts, 2) is robust to advice from unreliable experts and
3) can exploit information revealed by consensus and contradictions among multiple experts to better
determine the optimality of actions.

In the next chapter, we present a number of experiments to demonstrate that the CLUE framework
presented in this chapter has satisfied these goals and to investigate the effects of various parameters on
the functionality of the algorithm.
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Chapter 4

Experiments

In the previous chapter we presented the CLUE framework for learning single-stage decision prob-
lems (SSDPs) with the advice of multiple, potentially unreliable experts. In particular, we presented a
decision-making strategy that employs Bayes’ rule to pool all available advice to calculate the action
with the highest probability of being optimal for a given state, and a Bayesian method of updating the
reliability estimate of each expert.

In this chapter, we present a number of experiments to demonstrate that the CLUE framework
satisfies the following properties:

1. When advised by at least one reliable (or nearly reliable) expert, a CLUE agent converges to a
given performance threshold faster than an unassisted agent with an identical learning algorithm,
thereby benefiting from correct advice.

2. When advised by unreliable experts that are likely to offer incorrect advice, a CLUE agent asymp-
totically converges to the same threshold of performance achieved by an equivalent unassisted
agent, thereby being robust against incorrect advice.

3. When advised by multiple experts, a CLUE agent correctly ranks each expert by the degree to
which each is reliable, thereby identifying which experts are more likely to offer correct advice.

Additionally, these experiments aim to show the effect of each hyperparameter of the CLUE framework
and to demonstrate that these hyperparameters need not be finely tuned for the above properties to hold.

In Section 4.1, we detail how the environments with which the agents interact are generated (Section
4.1.1), the logic and parameters of each agent are tested (Section 4.1.2), and how experts are simulated
(Section 4.1.3). In Section 4.2 we compare the performance of each agent with different compositions
of expert panels, in order to determine how CLUE handles experts of different reliabilities. Within this
section, we also demonstrate how CLUE can benefit from adversarial advice (Section 4.2.1), provide
a comparison with the π-reuse and PRQ algorithms of Fernández and Veloso [2006] (Section 4.2.2),
and show that CLUE performs well when working with an alternate simulation of experts that behaves
differently from those presented in Section 4.1.3 (Section 4.2.3). In Section 4.3, we examine how the
reliability estimates change over time when interacting with different experts (Section 4.3.1) and how
the initial beta parameters affect the performance of the CLUE agent (Section 4.3.2). Finally, in Section
4.4, we examine the effects of varying degrees of agent-expert interaction on the performance of CLUE,
and in Section 4.5, we detail the hardware and software used in these experiments.
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4.1 Experiment Set-Up

4.1.1 Environment

To simulate an SSDP environment of the form discussed in Section 2.1, we use an influence diagram (ID)
to represent the state- and action-spaces, utility function and the conditional probability distributions
governing the distribution of states, as discussed in Section 2.1.1. To show that the performance of
CLUE generalises, we aggregate results across multiple, randomly generated ID environments.

Each state variable X ∈ X and each action variable D ∈ D have a binary domain {0, 1}, so that
|S| = 2|X | and |A| = 2|D|. In order to ensure that each ID represents a well-formed SSDP, we restrict the
graph structure to a directed acyclic graph and ensure that all state nodes are parents of action nodes (so
that the problem is fully observable), all action nodes are parents of the reward node (so that all actions
have some effect on the reward), no action nodes are descendants of another action node (so that only a
single round of decision-making occurs), and that no state nodes are children of an action node (as states
are observed before decision-making). Rewards are scaled between −1 and 1, so that results across
environments are easily comparable. Some randomly generated ID environments (|X | = 3, |D| = 2)
are presented in Figure 4.1.

Figure 4.1: Examples of randomly generated ID environments for |X | = 3, |D| = 2.

In implementing these ID environments, we employ a modified version of the ID implementation
provided by Poole and Mackworth [2017].

4.1.2 Agents

We compare a number of agents in these experiments. The True Policy Agent always selects the optimal
action for any state, thus representing the upper-bound performance any agent can achieve. It calcu-
lates the optimal policy by applying the variable elimination algorithm (see Section 2.1.1) on the ID
representing the environment.

The Baseline Agent is an action-value learner with ε-greedy exploration, as outlined in Section
2.1.2. The action-value function is initialised to Q0(s, a) = 0 ∀s ∈ S, a ∈ A, and the learning rate is set
to α = 1

k(s,a) , as described in Section 2.1.2. The value of ε decays from 1 to 0 at a constant rate across
the first 80% of trials, after which it remains at 0.

As representative of works in ARL that assume a single, infallible expert, we have the Naı̈ve Advice
Follower (NAF), which is identical to the Baseline Agent except that it will always follow any advice
it has received for a given state, as it acts under the assumption that each expert is reliable. As these
approaches are not designed for use with multiple experts, they are not equipped with methods to han-
dle contradictions between these experts. Thus, in our experiments, if the agent has received multiple
pieces of advice for a state, it will randomly select one of those pieces of advice to follow with uniform
probability.

Finally, we have a CLUE agent, as outlined in Chapter 3, whose learning algorithm and unassisted
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decision-making strategy are identical to the Baseline Agent, with initial beta prior values of α0, β0 = 1
for each expert and a decision-making threshold of T = 2

|A| .

4.1.3 Experts

All experiments are conducted with simulated software-based experts. As discussed in Section 2.2,
many assisted RL (ARL) approaches limit the number of interactions between experts and agents, so
as to simulate the potential cost of communication, and thus conditions are imposed upon the expert to
ensure it gives advice where it is most needed [Torrey and Taylor 2013]. In this research, we adopt the
temporality conditions outlined by Innes and Lascarides [2019]. Firstly, we force the expert to wait at
least µ trials between advice utterances, thus restricting the total number of interactions. We refer to µ
as the interval parameter. Secondly, the expert may only offer advice if:∑

t′≤i≤t

EU(a∗i |si)− EU(ai|si)
t− t′

≥ γ,

where t is the current trial, t′ is the last trial for which expert e gave advice, a∗i is the optimal action
for trial i, ai is the action taken by the agent in trial i, and γ is a tolerance parameter that controls how
tolerant an expert is of suboptimal performance by the agent. This condition ensures that the expert will
only intervene if the agent is under-performing to a significant degree.

In order to simulate reliability, each expert e is controlled by a true reliability parameter ρ(e)
true

[Masegosa and Moral 2013]. When offering advice, the expert will advise the optimal action a∗ (ob-
tained from a “ground truth” model of the environment using the variable elimination algorithm) with
probability ρ(e)

true, or else will randomly advise any other action. Thus an expert with ρ(e)
true = 1 is

reliable, while one with ρ(e)
true = 0 never advises the optimal action.

This process for giving advice is summarised in Algorithm 7.

Algorithm 7 Expert Advice Process
1: procedure PANEL ADVISE(st, at, rt, E) . E = panel of experts
2: advice← [ ]
3: for e ∈ E do
4: a∗t ←get optimal action(st)
5: t′ ←last advice trial() . the last trial expert e gave advice
6: if t− t′ ≥ µ(e) and

∑
t′<i≤t

EU(st,a∗i )−EU(st,ai)
t−t′ ≥ γ(e) then

7: p←random()
8: if p < ρ

(e)
true then

9: advice[e]← a∗t . advise best action with probability ρ(e)
true

10: else
11: advice[e]←random a ∈ A \ {a∗t } . advise any suboptimal action
12: return advice

4.2 Panel Compositions

In our first set of experiments, we compare the reward obtained in each trial by the agents advised by
different panels of experts. The rewards obtained by the agents training over 80, 000 trials across 100
different random environments with 10 state variables (|S| = 1024) and 3 action variables (|A| = 8)
are averaged and plotted against trials. For legibility, the resulting graphs are smoothed using LOWESS
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smoothing [Cleveland 1981]. Shaded areas represent one standard deviation above and below the aver-
age curve.

We compare the performance of each agent with three panels of experts. The first, a Single Reliable
Expert, consists of one expert that always gives correct advice (ρtrue = 1), representing the scenario
assumed by most traditional IRL approaches. The second, a Single Unreliable Expert, consists of one
expert that always gives incorrect advice (ρtrue = 0), representing a “worst case” scenario for traditional
IRL approaches. The third, a Varied Panel, consists of seven experts with varying degrees of unreliability
(Ptrue = {0, 0.1, 0.25, 0.5, 0.75, 0.9, 1}), representing a scenario in which correct advice is present, but
must be recognised among incorrect advice from unreliable experts. Results for the single expert panels
are provided in Figure 4.2, and results for the varied panel are provided in Figure 4.3.

Figure 4.2: A comparison of agent performance, advised by two panels, a Single Reliable Expert
(ρtrue = 1) and a Single Unreliable Expert (ρtrue = 0). Note that for the single unreliable expert,
the Baseline Agent and CLUE have near-identical performance.

In the first experiment, where ρtrue = 1, both NAF and CLUE outperform the Baseline Agent,
with NAF converging particularly quickly, demonstrating the power of existing ARL methods when the
assumption of reliability holds. As CLUE does not assume reliability (with initial E[ρ] = 0.5) and is
therefore more cautious, it does not converge as quickly, although it still is able to take advantage of the
correct advice to converge faster than the Baseline Agent.

A demonstration of the robustness of CLUE comes in the second experiment, where ρtrue = 0. In
this scenario, NAF exclusively follows sub-optimal advice and therefore performs exceptionally poorly,
failing to converge to the optimal policy. CLUE, on the other hand, correctly identifies that the advice is
poor and learns not to follow it, and thus has performance almost identical to the Baseline Agent.

In the third experiment, with the varied panel, the performance of NAF lies somewhere between
the two single expert cases, as it receives a mix of advice including optimal and suboptimal actions, and
cannot discern which advice is advantageous to follow. However, CLUE converges to the optimal policy
even faster than it did in the case of a single reliable expert, comparable to the performance of NAF in
the same case. This indicates that not only is CLUE learning to assess which experts are worth following
and which are not, it is also benefiting from the presence of more advice and the information provided
by consensus and disagreement between experts.

Note that in all experiments the standard deviation is quite large relative to the range of possible
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Figure 4.3: A comparison of agent performance, advised by the varied panel (Ptrue =
{0, 0.1, 0.25, 0.5, 0.75, 0.9, 1}).

rewards. This is due to the fact that these results are aggregated over multiple environments with very
different reward functions. It is important to note that, whenever the agent’s performance converges to
optimal behaviour, the standard deviation in reward matches that of the True Policy Agent.

Thus, the above experiments have demonstrated that, for this class of problems, CLUE is able to
benefit from increased sample efficiency with advice from reliable experts while being robust against
advice from unreliable experts, and can benefit from advice given by multiple experts even when these
experts contradict each other.

4.2.1 Adversarial Advice

To illustrate how CLUE can benefit from adversarial advice (advice from an expert that is consis-
tently wrong), we compare the average reward obtained by the agent advised by a single reliable expert
(ρtrue = 1) and a single unreliable expert (ρtrue = 0), in an environment where |X | = 10 and |D| = 1,
and thus |A| = 2, averaged over 100 runs. Results are plotted in Figure 4.4.

For both experts, CLUE shows a similar improvement in performance over the Baseline Agent.
This improvement is possible in the case of the single unreliable expert because, having estimated the
reliability of the expert to be low, the suboptimal action advised by the expert is deemed to have a low
probability of being optimal, thus improving the probability of the other action being optimal.

4.2.2 Comparison with Probabilistic Policy Reuse

In this set of experiments, we compare the average reward per trial obtained by a number of agents in
an environment with |X | = 7, |D| = 3, averaged over 100 runs. The panels compared include the three
described in Section 4.2, as well as a Single Random Expert (ρtrue = 0.5). In addition to the agents
described in Section 4.1.2, we compare adaptations of the π-reuse and PRQ algorithms of Fernández
and Veloso [2006], hereafter referred to as the Decayed Reliance Agent and PRQ Agent respectively.

The Decayed Reliance Agent maintains a parameter ψ ∈ [0, 1] that decays over the course of
learning. With probability ψ, the agent randomly follows advice it has received from the experts, in the
same fashion as NAF. Otherwise, the agent acts unassisted, in the same fashion as the Baseline Agent.
In these experiments, ψ decays from 1 to 0 across the first 80% of trials.

32



Figure 4.4: A comparison of the performance of CLUE with a single reliable expert (ρtrue = 1) and a
single unreliable expert (ρtrue = 0) for an environment where |A| = 2.

The PRQ Agent maintains a list of policies L = {Π(e)|∀e ∈ E} which retain the advice it has
received from each expert, as well as its own learned policy Π(0). Every time it selects an action, it
follows a policy with probability

P (Π(j)) =
eτ

W (j)∑|E|
p=0 e

τW
(p)
,

where τ is a temperature parameter and W (j) is the average reward obtained by following expert j, with
W (0) denoting the average reward obtained by following the agent’s policy. Every trial, the temperature
parameter is incremented by ∆τ . In these experiments, τ = 0 and ∆τ = 0.05.

The Decayed Reliance Agent is outperformed by CLUE in all tested panels, as either its perfor-
mance is hampered due to following suboptimal advice (as with the single unreliable expert), or it stops
relying on useful advice before its policy has converged (as with the other panels).

The PRQ agent performs exceptionally well when a reliable expert is present, even outperforming
CLUE with the single reliable expert, as it learns to identify and follow the optimal policy. However, its
performance is hampered with the single unreliable expert, as it takes longer for it to learn to identify
and ignore the suboptimal policy. When the expert’s policy is not optimal, but is nevertheless better
than a random policy, as with the single random expert, the PRQ agent learns early on that following the
expert’s advice is better than its initial policy, resulting in an initial boost to performance, but is unable
to surpass the performance of the policy. CLUE, on the other hand, is able to benefit from the higher-
than-random chance of receiving optimal advice, but is still able to surpass the expert’s performance.

These results demonstrate that CLUE is more robust to unreliable experts, while still being able
to benefit from the presence of good advice, and that CLUE is able to surpass the performance of the
experts advising it.

4.2.3 Alternate Approach to Expert Simulation

In this set of experiments, we consider a different approach to simulating experts, in order to show that
the performance of CLUE is not dependent on the specific implementation of software experts detailed
in Section 4.1.3. In this approach, each expert only observes a subset of state variables in the ID that
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Figure 4.5: Comparisons of CLUE with the Decayed Reliance and PRQ agents, adapted from the π-
reuse and PRQ algorithms respectively Fernández and Veloso [2006]. For the sake of clarity, a version
without the shaded areas representing one standard deviation is provided. Note that for the varied panel,
CLUE and PRQ have near-identical performance, and thus the PRQ curve lies on top of the CLUE curve.

represents the environment, and must advise an action based on this partial observation. Thus an expert
with 0 hidden variables is reliable and an expert with |X | hidden variables always advises the action
most likely to be optimal given no observation of the state. A comparison of the performances of CLUE
and NAF in an environment where |X | = 7 and |D| = 3, averaged over 10 runs, is given in Figure 4.6.
The panels tested include single experts with 0, 1, 3, 5 and 7 hidden variables, as well as a varied panel
composed of all of the aforementioned experts.

Here CLUE outperforms the Baseline Agent when the number of hidden state variables is less than
|X |, as in these cases the expert is more likely to advise the optimal action than any other action, and
performs on par with the Baseline Agent when the amount of information that can be gained from the
expert is minimal. CLUE is able to benefit from the varied panel, with performance similar to the case
where no state variables are hidden from the expert. NAF, on the other hand, only converges to the
optimal policy when the expert is reliable, performing poorly otherwise. These experiments show that
CLUE can perform desirably with expert implementations that do not rely on a single “ground truth”
reliability parameter as with the implementation presented in Section 4.1.3.

4.3 Reliability Estimates

4.3.1 Reliability Estimates Over Time

In order to further examine the results obtained in Section 4.2, we now compare the value of E[ρ] for
each expert in each panel across the same 80, 000 trials as in the previous experiments. As before,
results are averaged over 100 runs in different randomly generated environments and the resulting plots
are smoothed using LOWESS smoothing [Cleveland 1981]. Results for the single reliable expert and
single unreliable expert are presented in Figure 4.7, and results for the varied panel are presented in
Figure 4.8.
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Figure 4.6: A comparison of agent performance advised by a single expert with varying numbers of
hidden state variables. The legend denotes the number of hidden state variables, with the varied panel
consisting of experts with 0, 1, 3, 5 and 7 variables hidden. The Baseline Agent is also given for com-
parison. For the sake of clarity, a version without the shaded areas representing one standard deviation
is provided.

For the single expert cases, the value of E[ρ] converges towards the correct value of ρtrue (1 and 0
respectively), with the final estimates being E[ρ] = 0.996 for the single reliable expert and E[ρ] = 0.005
for the single unreliable expert. The small degree of error present in these values may be due to poor
evaluations of the optimality of the advice received by the agent in early trials, as discussed in Section
3.2.3. Nevertheless, these estimates are close enough (absolute error less than 0.01) to the values of
ρtrue as to result in the desirable performance presented in Figure 4.2.

For the varied panel, each expert is correctly ranked according to their reliability and the value of
E[ρ(e)] for each expert e correctly converges towards the value of ρ(e)

true, even faster than the single expert
cases. As is to be expected, the variance in the final estimate is larger for experts that randomly choose
between suboptimal and optimal advice (ρtrue = 0.5) than for experts that more consistently offer one
or the other. The values to which the estimates converge, as well as the errors in these estimates, are
tabulated in Table 4.1.

These experiments show that CLUE is able to estimate ρtrue within a small degree of error and
is able to correctly rank experts by their reliabilities in the case of the varied panel. As the decision-
making rule presented in Section 3.2.2 assumes accurate estimates of reliability, and theoretical analysis
in Section 3.4 shows that accurate estimates of reliability lead to a higher probability of acting optimally
when exploring (for |A| = 2), these results can aid in explaining the desirable performance of CLUE
demonstrated in Section 4.2.
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Figure 4.7: The value of E[ρ] over time as the agent learns, advised by the single reliable expert (ρtrue =
1) and single unreliable expert (ρtrue = 0).

Figure 4.8: The value of E[ρ] over time as the agent learns, advised by the varied panel (Ptrue =

{0, 0.1, 0.25, 0.5, 0.75, 0.9, 1}). The legend shows the value of ρ(e)
true for each expert.

4.3.2 Prior Parameters

In the next set of experiments, we investigate the effect of varying the α0 and β0 parameters which
determine the prior reliability distribution (see Section 3.2.3). Recall that α0 and β0 can be thought of
as prior counts of the expert giving incorrect and correct advice respectively. Thus α0 > β0 biases ρ
towards 0, and α0 < β0 towards 1, with α0 + β0 determining the strength of that prior against trial data.

To measure their effect, we plot the difference between the average total regret of CLUE and the
average total regret of the Baseline Agent,

R̄CLUE − R̄Baseline, (4.1)

for a number of different α0 and β0 values, summed over 10, 000 trials and averaged over 100 runs for a
single randomly generated environment with |S| = 128 and |A| = 8, where the total regret for N trials
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is equal to
R =

∑
0≤t<N

r(st, π
∗(st))− r(st, at). (4.2)

Therefore, a value of 0 indicates performance equal to the Baseline Agent. Minimising regret is equiva-
lent to maximising reward, and thus negative values indicate better performance than the Baseline Agent
and positive values indicate worse performance than the Baseline Agent, with the magnitude indicating
the degree to which performance is better or worse. For the sake of simplicity, the same α0 and β0 values
are used for each expert in a panel, although in practice these values can be initialised differently for
each expert.

This process was repeated for each of the panels described in Section 4.2, and plotted in Figure 4.9.
For comparison, the average total regret obtained by the Baseline Agent was 3505.0, and the average
total regret obtained by NAF was 411.1 for the single reliable expert, 9449.7 for the single unreliable
expert, and 4994.5 for the varied panel.

Figure 4.9: The total difference in regret between CLUE and the Baseline Agent for each value of α0

and β0 and for each panel. Lower values indicate better performance.

For the single reliable expert, the best performance occurs when the parameters heavily bias the
estimate towards 1. However, all tested values result in improved performance over the Baseline Agent,
and the gain in performance between α0 = 1, β0 = 1 and α0 = 1, β0 = 1000 is minimal. Results for
the single unreliable expert are less varied, with performance close to the Baseline Agent for all tested
values. Performance is only degraded when β0 is large.

The best performance for the varied panel occurs when both parameters are low, as the variety in
ρtrue means that no single strong prior can bias the reliability distributions correctly for all experts at a

ρtrue Final estimate Absolute Error Relative Error
0 0.004 0.004 N/A

0.1 0.098 0.002 0.020

0.25 0.254 0.004 0.016

0.5 0.504 0.004 0.008

0.75 0.759 0.009 0.012

0.9 0.916 0.016 0.018

1 0.994 0.006 0.006

Table 4.1: Comparison of converged E[ρ] estimates for the varied panel.
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time. Across all panels, the performance with a relatively uninformative prior is close to, if not equal
to, the best performance, making it a reasonable choice in the absence of strong belief about an expert’s
reliability. These results also demonstrate that CLUE is robust to the choice of prior, except where
α0 + β0 approaches the order of magnitude of the total number of trials.

4.4 Expert Parameters

In the next set of experiments, we investigate the effect of varying the number of interactions between
the agent and each expert. Recall from Section 4.1.3 that the number of interactions is determined by
the values of µ and γ, with lower values of both resulting in more interactions and higher values of both
resulting in fewer interactions. As in Section 4.3.2, we plot the difference in average total regret between
the CLUE and the Baseline Agent, and between NAF and the Baseline Agent, for varying values of µ
and γ, as depicted in Figure 4.10. The environment and number of trials and runs is identical to Section
4.3.2, and α0, β0 = 1, as in Section 4.2.

Figure 4.10: The total difference in regret between CLUE and the Baseline Agent and NAF and the
Baseline Agent for each value of µ and γ and for each panel. Lower values indicate better performance.

With NAF, more advice results in better performance when the advice is always correct, but worse
performance when the advice is sometimes incorrect. CLUE on the other hand is robust to the presence
of incorrect advice; more correct advice results in better performance, but more incorrect advice has no
adverse effect on performance. These results show that increased agent-expert interaction does not lead
to worse performance, with performance either improving or not changing significantly depending on
the reliability of the experts.
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4.5 Hardware and Software Specifications

Computations were performed using High Performance Computing infrastructure provided by the Math-
ematical Sciences Support unit at the University of the Witwatersrand.

Experiments were run on Ubuntu 18.04 machines with Intel(R) Core(TM) i9-10940X CPU @
3.30GHz, with 125GiB of RAM.

All code was written and executed in python 3.8.6, with the following libraries:

• numpy version 1.19.2

• matplotlib version 3.3.2

• statsmodels version 0.12.0

• networkx version 2.5

Additionally, the implementations of graphical models, influence diagrams, factors and variable
elimination are adapted from Poole and Mackworth [2017].
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Chapter 5

Conclusion

The aim of this work was to devise an algorithm for learning SSDPs with the assistance of one or more
expert advisors, in such a way that an agent can benefit from the advice of reliable experts but can be
robust against the advice of unreliable experts. We presented the CLUE algorithm, which operates by
explicitly modelling the reliability of each expert and using that model to combine advice in a Bayesian
fashion to bias action selection when exploring. Our contributions included the aforementioned decision-
making strategy (Section 3.2.2) and a method by which the reliability models can be updated given the
agent’s own experience of the environment (Section 3.2.3). We also provided theoretical results that
show the conditions under which a CLUE agent’s exploration is guaranteed to be more likely to act
optimally than some default exploration strategy (Section 3.4).

To demonstrate the effectiveness of CLUE, we performed a number of experiments with differ-
ent simulated environments, types of simulated experts and panel compositions. Our results show that
CLUE is able to benefit from advice given by consistently reliable experts, but is also robust against ad-
vice given by consistently unreliable experts. When an expert’s performance is not optimal, but is better
than randomly selecting actions, a CLUE agent is able to benefit from this advice when exploring, but is
ultimately able to surpass the performance of the expert advising it. When advised by multiple experts,
CLUE is able to exploit the information provided by consensus and contradictions among experts to
correctly rank experts by their reliability and improve performance gains. Furthermore, our experiments
show that the performance of CLUE is not dependent on a narrow selection of hyperparameters, but
is instead robust to a wide choice of initial reliability distributions and varying degrees of agent-expert
interaction.

This work may allow for easier integration of external information in the learning process, ulti-
mately contributing towards tackling more complex problems with greater sample efficiency. The ex-
plicit modelling of expert reliability allows for a more transparent decision-making process, as it can
easily be ascertained why a CLUE agent did or did not follow a given piece of advice. Thus, the integra-
tion of the CLUE framework in the learning process does not negatively impact explainability. As with
all RL approaches, care must be taken to ensure an ethical process of data gathering from real world
interactions (such as in the medical diagnosis example). Additionally, any application of CLUE that
uses human experts should ensure that advice is elicited ethically, without exploitation and in a manner
that respects participants’ privacy.

5.1 Future Work

A natural future extension to CLUE would be to extend the framework to the full, episodic RL problem.
Such an extension would need to take into account delayed rewards when evaluating the advice given
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by experts. An agent in this setting would also need to decide between following entire policies advised
by an expert and following single actions or small sequences of actions.

All learning agents tested in this dissertation use the action-value ε-greedy algorithm as described in
Section 2.1.2 to learn policies and select actions when unassisted. However, the CLUE algorithm may
make use of any learning algorithm and unassisted decision-making strategy. Further research would
investigate the performance of a CLUE agent which makes use of other SSDP algorithms (e.g. LinUCB
[Li et al. 2010], NeuralBandit [Allesiardo et al. 2014] or Contextual Thompson Sampling [Agrawal and
Goyal 2013]) for policy learning and unassisted action selection.

Other possible future research includes relaxing the assumptions given in Section 3.1, particularly
the assumption of uniform reliability across the state space. Relaxing this assumption would almost
certainly require a more complex model of the reliability of each expert.

Other related future work may include testing the behaviour of CLUE when advice is given only in
certain states. The theoretical analysis performed in Section 3.4 can also be expanded to arbitrary action
spaces in order to determine if similar behaviour guarantees are present. This would involve leaving |A|
arbitrary when determining P (a∗).

Finally, it remains to be seen how well a CLUE agent would perform in real world environments
with the advice of human experts. Further research is needed in these areas to ascertain how well CLUE
generalises to these settings.

41



References

[Agrawal and Goyal 2013] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual ban-
dits with linear payoffs. In International Conference on Machine Learning, pages 127–135.
PMLR, 2013.
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