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Abstract— As robots become more and more integrated in
human spaces, it is increasingly important for them to be able
to explain their decisions to the people they interact with.
These explanations need to be generated automatically and in
real-time in response to decisions taken in dynamic and often
unstructured environments. However, most research in explain-
able human-robot interaction only considers explanations (often
manually selected) presented in controlled environments. We
present an explanation generation method based on counter-
factuals and demonstrate its use in an “in-the-wild” experiment
using automatically generated and selected explanations of
autonomous interactions with real people to assess the effect of
these explanations on participants’ ability to predict the robot’s
behaviour in hypothetical scenarios. Our results suggest that
explanations aid one’s ability to predict the robot’s behaviour,
but also that the addition of counterfactual statements may add
some burden and counteract this beneficial effect.

I. INTRODUCTION

As advances in the field of robotics continue to be made,
people are increasingly afforded the opportunity to interact
with robots in public spaces such as hospitals [1], stores [2]
and restaurants [3]. However, as the potential impact robot
decisions can have on people’s daily lives grows, so too
does the need for the decision-making of these robots to be
understood and explained [4][5], with the European Union
going so far as to designate a “right to explanation” [6].

Given the breadth of the topic of explainability, from
explainable AI (XAI) [7] to explainable robotics [8], it is
important to specify what exactly is meant by “explainabil-
ity”. Here we adopt the definition argued for by Miller that
a decision being explainable describes the degree to which
the causes of that decision can be understood [9]. Our focus
in this work is on improving explainability via explanation -
the explicit statement of the reasons for a decision. The most
popular approaches for explanation generation in XAI are
those that identify features important to the decision being
made, such as LIME [10]. However, given the contrastive
nature of explanations [9], many approaches exploit coun-
terfactual reasoning to generate suitable explanations of a
decision [11]. Counterfactual explanations, either explicitly
or implicitly, suggest how an input can be changed to
change the decision. Examples include the counterfactual
explanations of Wachter et al. [6] and Albini et al. [12].
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Fig. 1: A person interacting with the robot and being presented
with an explanation. In the explanation, red indicates the decision
the robot is explaining, dark blue is the explanation itself, and light
blue is a counterfactual statement building from the explanation.

Explanation generation has seen some attention in robotics
contexts [8][5][4]. For example, Gjærum et al. [13] extract
counterfactual explanations from model trees which act as
surrgoates for the real decision-maker. Diehl and Ramirez-
Amaro [14] use a causal model learned in simulation to
predict and explain potential failures in a block stacking
task, leveraging counterfactual reasoning. Some works focus
explicitly on explaining human-robot interactions, such as
Stange et al. [15], who use episodic memory to explain a
robot’s decisions in terms of the strategies and needs of the
robot at the moment of decision-making.

In this work, we specifically pose the following research
question: Do explanations of a robot’s decision in a given
context improve one’s ability to understand (and thus predict)
the decision-making of the robot in similar contexts? To
answer this question, we need to evaluate how explanations
can promote understanding of a decision-making system.

When evaluating explanations, researchers often conduct
experiments that simplify and abstract a target domain
to more tightly control the conditions of an experiment
and remove the influence of confounding factors [16].
This type of approach (dubbed “human-grounded” by
Doshi-Velez and Kim [16]) has its upsides, namely by
making an evaluation of explanations easier to perform,
but the controlled conditions of a lab may not sufficiently
match the dynamic and unstructured conditions of some
real environments. For example, if a study is evaluating an
explanation of a human-robot interaction, then the person
involved in the interaction (if indeed the interaction is real at
all) may not necessarily be the same person involved in the



evaluation. If a robot is to explain its decisions to the people
it interacts with, then the fact that the person is involved in
both the interaction and the explanation may be crucial in
examining how such explanations may be interpreted [15].

Given the goal of explanations to improve understanding,
several studies have proposed behavioural evaluations to
measure understanding. For example, Chandran Nair et al.
[17] have participants reconstruct the order of video clips
of a robot performing a task to evaluate the effectiveness of
different types of explanations. Van der Waa et al. [18] use
the ability of participants to predict the output of an advice-
giving system, given hand-designed contrastive rule-based
or example-based explanations, to measure the construct of
system understanding. Our approach differs from these works
as we evaluate explanations generated automatically and in
real-time, presented to participants who are also the ones
interacting with the robot, in an “in-the-wild” environment.

Our contributions are as follows. Firstly, we develop a
system that allows a robot to elicit interactions from people in
a multi-person environment and then provide automatically
generated and online counterfactual explanations for the
specific elicitation decisions it makes, based on previous
work [19]. Secondly, we design and conduct an experiment
in which said robot is left unsupervised in a public space
to elicit interactions from participants (N=92), explain its
decisions to those same participants and assess their under-
standing of the decision-making system through their ability
to predict the robot’s decisions in similar, hypothetical cases.

We find that explanations are indeed helpful and improve
participants’ ability to predict the robot’s decision-making,
but also that the additional of counterfactual statements
in an explanation, while providing more information, may
counteract this effect.

To improve reproducibility, the ROS1 implementations of
the perception, decision-making, explanation generation and
robot behaviour are made publicly available1. All compo-
nents apart from the robot’s behaviour are robot-agnostic.

II. PERCEPTION AND DECISION-MAKING

In this section, we describe the way the robot perceives
the people it interacts with and how it autonomously makes
decisions, adapted from a previous publication [19].

The robot is equipped with an RGBD camera. From the
raw image, OpenDR’s OpenPose implementation is used
to detect the 2D pose of each visible person [20]. Together
with the depth information, 3D poses for each person can
be determined, which in turn can be used to calculate
low-level features such as the distance of each person to
the robot (denoted DXR for person X and robot R) and the
direction they are facing. The pose estimator also outputs
a confidence value (PECX ) for each detected person.
High-level features such as each person’s mutual gaze score
with the robot (MGXR) and a derived engagement score
(EVXR) are then calculated [21].

1https://github.com/tamlinlove/engage

Fig. 2: A causal model of the perception system and how it relates
to the decision-making algorithm. The algorithm relies on the pose
estimation confidence PECX and the engagement value with the
robot EVXR for each person X . EVXR is determined by the
distance (DXR) and mutual gaze score with the robot (MGXR).

To decide how and with whom to interact, the robot
follows a set of heuristic rules. If the robot does not detect
anyone, it will do nothing (action NOTHING). Otherwise, it
will calculate a score Score(X) = PECX×EVXR for each
detected person X . The robot targets an elicitation towards
person T = argmaxX Score(X) if Score(T ) is above a
specified threshold (action ELICIT TARGET on target T ),
otherwise performing a general elicitation targeted at no one
in particular (action ELICIT GENERAL).

Translating these decisions to actions performed by
the robot, the ELICIT TARGET decision results in the
robot looking at the target with a happy expression while
performing one of several waving gestures, while the
ELICIT GENERAL decision results in the robot looking
straight ahead with a neutral expression while performing
simple idle gestures. For both of these decisions, the robot
also utters a short sentence (e.g. “Hi” or “Good day”).

III. EXPLANATION GENERATION

In this section, we describe our approach to automatically
generating explanations of the decisions the robot takes.
In our approach, explanations answer the question “Why
D = ⟨A, T ⟩?”, where the decision D is composed of the
action A that the robot decides to perform and the target
T of that action (or ∅ if A has no target). The answer to
this question consists of the assignments of one or more
variables. For example, if the robot makes the decision
⟨ELICIT TARGET,A⟩, a valid explanation for this decision
might be DAR < 3m, implying both that any distance less
than 3 metres would result in the same decision and that,
if person A would have been 3 metres away or further, the
robot would have taken either a different action or the same
action with a different target.

To find these explanations, we employ a counterfactual
search on a causal model of the perception system described
in Sec. II and how it relates to the decision-making
algorithm, depicted in Fig. 2, encoding the causal dynamics
between the relevant features. The use of a causal model
allows interventions to be performed on variables such that
the effect of these interventions is propagated down the



graph to the decision. This differs from a sampling approach
(e.g. as in LIME [10]) as no change occurs to ancestors
of the intervened variable. By using a graphical model, the
graph can be expanded or contracted at each decision point
to accommodate a dynamic number of people, as opposed
to limiting the number of people by storing every variable
in a fixed-length feature vector.

The counterfactual search then consists of applying in-
terventions on each variable in the causal graph to find a
threshold above or below which any setting of that variable
would result in a different decision from the real one. To
make this search tractable, the variables in the model are
discretised. By requiring this threshold, we ensure that the
identified variables have discriminative power, following a
similar logic to Albini et al. [12]. Thus, our method returns
potentially multiple explanations of the form ⟨V, τ⟩, where
V is the variable and τ is the threshold.

For example, continuing with the example above, the
causal search may find that any intervention setting the
distance DAR to a value of 3 or more metres would result
in a different decision to the one the robot took, while any
intervention setting DAR < 3m would result in the same
decision, hence arriving at the explanation DAR < 3m.

Once one or more explanations are selected, they can be
converted to natural language using an authored mapping,
as can their associated counterfactual statements. Fig. 3
illustrates some examples of explanations.

IV. EXPERIMENT

In this section, we present an experiment for evaluating
our explanation generation method (Sec. III) in the context of
a robot eliciting interactions from people in an unstructured,
“in-the-wild” environment. This study has been approved
by the ethical committee of the Spanish National Research
Council (CSIC).

In our experiment, we positioned a robot (a Pal ARI [22])
in the entrance hall of a university building, as depicted in
Fig. 1, facing the entrance of the building (as can be seen
in Fig. 3). The robot remained in this position for 8 hours
between 09:30 and 17:30 every day for four days, totalling
32 hours of operation. Computations were performed on
an MSI Stealth GS77 laptop with an Intel Core i7-12700H
CPU, 32 GB RAM and an Nvidia GeForce RTX 3070 Ti
GPU. Given the “in-the-wild” setting of the experiment,
participants consisted of people who voluntarily approached
the robot and completed a short test on the robot’s
tablet interface. Demographic information was not collected,
although the majority of participants were likely to have been
university students (between the ages of 18 and 30) studying
STEM courses. The experiment was conducted in Catalan.

A. Experimental Condition

The experiment was set up as a between-subject study, in
which we manipulated the form of explanation generated by
the robot as a consequence of its decision during its inter-
action with the participant. Each participant was randomly
assigned to one of the three conditions:

Control (group C) - participants in this group were only
given a description of the decision

• e.g. “I tried to get Person A to talk to me.”
• e.g. “I tried to get anyone to talk to me.”
Explanation (group E) - participants in this group were

given a natural language explanation detailing the reason why
the decision was made, obtained from the process described
in Sec. III. Where multiple explanations were available from
the explanation module, one was selected randomly such that
each explanation consisted of only one variable.

• e.g. “I tried to get Person A to talk to me because they
were looking at me.”

• e.g. “I tried to get anyone to talk to me because I was
not confident in my detection of Person A’s skeleton.”

Explanation + Counterfactual (group CF) - this group
was identical to group E, except that they also received
a counterfactual statement indicating what the robot would
have done if the stated reason was not so.

• e.g. “I tried to get Person A to talk to me because they
were looking at me. If Person A was not looking at me,
I would have tried to get Person B to talk to me.”

• e.g. “I tried to get anyone to talk to me because I was
not confident in my detection of Person A’s skeleton. If
I was at least a little bit confident of my detection of
Person A’s skeleton, I would have tried to get Person A
to talk to me.”

The total number of participants who performed the test
was 115. However, we excluded 23 who interacted more
than once with the robot. Therefore, N = 92 participants
were considered for the study: 30 in Group C, 31 in Group
E and 31 in Group CF). Given the number of participants,
and an effect size, f2 = 0.1 we expected a statistical power
of 0.77 for a p < 0.05 when considering 2 predictors.

B. Experimental Measure

The behavioural measure we used to assess participants’
understanding of the robot’s decisions is their ability to pre-
dict the decision-making of the robot in a hypothetical sce-
nario, inspired by the forward simulation metric proposed by
Doshi-Velez and Kim [16] and the advice prediction measure
used by van der Waa et al. [18]. Given that our experiment
took place “in-the-wild” where attracting participants nec-
essarily interrupts their normal schedule, we opted to focus
on this measure alone, rather than including additional sub-
jective questionnaires or demographic questions, to shorten
the duration of each test. Results from this experiment can
suggest the kinds of subjective measures we may wish to
investigate in future experiments (as discussed in Sec. VI).

To convert the participants’ answers into a score for use
in the statistical analysis, we assigned −1 for incorrect
answers, 0 for selecting the “I don’t know” option and 1
for correct answers.

C. Research Hypotheses

We aimed to test the following hypotheses.



(a) Explanation for Group C (Control) (b) Explanation for Group E (Explanation)

(c) Explanation for Group CF (Explanation + Counterfactual) (d) Corresponding question (identical for each group)

Fig. 3: Example of the kinds of explanations (3a - 3c) and questions (3d) presented to participants. Each participant received a unique
picture, explanation and prediction question based on the real decision the robot made during the elicitation.

H 1 Participants who interact with a robot that provides
explanations of its decisions (groups E and CF) can better
predict how the robot would act in a similar situation in com-
parison to those who are provided with no explanation (C).

H 2 Participants who interact with a robot that provides
counterfactual statements (group CF) can better predict
how the robot would act in a similar situation in comparison
to those who are provided with no explanation (C) or only
explanation (E).

H 3 Participants provided with explanations using
physically-grounded variables such as distance from
the robot (DXR) and mutual gaze (MGXR) with the robot
are able to better predict the robot’s behaviour than those
provided with explanations using more abstract variables,
such as engagement with the robot (EVXR) and the person’s
pose estimation confidence (PECX ).

D. Procedure
To attract participants, the robot executed the decision-

making procedures described in Sec. II. Once a participant
approached the robot and began to interact with its tablet,
all decision-making behaviour was paused, ensuring that the
prediction test is not interrupted and that the decision being
explained is one where the participant is not very close to
the robot. The participant was given the option to consent

to participating in the experiment, and if they accepted,
they were asked whether or not they had interacted with the
robot before. If participants had already interacted with the
robot, we excluded them from the experiment, but they were
still welcome to continue interacting with the robot and
take another test. After a short contextual description of the
experiment provided to first-time participants, the participant
was then shown a picture of the moment the last decision
was made, with detected people labelled alphabetically.
Accompanying the picture was an explanation of the robot’s
decision, determined by the participant group (see Fig. 3a
- 3c). It is worth noting that the picture is taken live, at the
moment of the decision, and the explanation is automatically
generated from that real decision. To protect the privacy of
participants, these pictures were not recorded.

Participants were then asked to imagine a hypothetical
scenario in which an additional person (here given the name
“Bob”) was present in the same scene as the participant.
Some context relating to the additional person was provided,
namely that “Bob” was 2 metres away from the robot (and
whether or not this put them closer or further than anyone
else) and looking directly at it (although one of these
may be omitted if the explanation provided relates to this
variable). Participants were then asked what the robot would
do if some intervention was made on the additional person,



using the same variable as presented in the explanation
for groups E and CF. Fig. 3d shows an example question
corresponding to the explanations in Fig. 3a - 3c.

The participant was presented with four multiple-choice
answers, the first three of which contained the correct
answer and two incorrect answers in the form of decisions
the robot would make, with the last answer always being
“I don’t know”. Upon selecting an answer, the participant
was thanked, the test ended, and after some time the robot
resumed its elicitation behaviour.

E. Results

To test hypothesis H1, we ran a logistic regression with the
type of explanation (C, E, CF) as predictors controlling for
participants’ ability to predict the correct robot decision. The
overall model was significant (F (2, 90) = 3.37, R2 = 0.07,
p < 0.05). Results indicate that participants who received
explanations from the robot (group E) were better able to
predict the robot’s decisions (M = 0.23 SD = 0.89) than
those who received no explanation (group C) (M = 0.06
SD = 0.94, β = 0.43, p < 0.05). However, counterfactual
statements (group CF) did not have a statistically significant
effect on participants’ ability to predict the robot’s decisions
(M = 0.03, SD = 0.91, β = −0.14, p = 0.43).

To address hypothesis H2, we ran a logistic regression
excluding group C. The results indicate that the explanation
type (E vs CF) had a significant effect on the participants’
ability to predict the robot’s decision. Participants provided
with additional counterfactual statements were less able
to predict the robot’s decision compared to those who
received only explanations (F (1, 61) = 6.62, R2 = 0.1,
β = −0.57, p < 0.05, f2 = 0.1, statistical power 0.69 with
one predictor).

To test hypothesis H3, we included the variables used
for the explanation as an additional predictor to our logistic
regression model described for H1. The overall model was
significant when the explanation variable was “Mutual Gaze”
(F (5, 87) = 3.4, R2 = 0.17, p < 0.05, f2 = 0.1, statistical
power 0.6 with five predictors), while we did not find any
significance for the other three variables.

The results show a significant effect of the explanation
variable for participants who belonged to Group CF who
performed worse compared to participants who belonged to
Group C (β = −1.24, p < 0.05). Given the small sample
sizes when combining group and explanation variable, we
also report the descriptive statistics to further speculate on
the effect of each explanation variable, “Engagement Value”
(M = −0.03, SD = 0.92), for “Mutual Gaze” (M = −0.04,
SD = 0.88), “Pose Estimation Confidence” (M = −0.05,
SD = 0.93), and “Distance” (M = 0.37, SD = 0.88).

V. DISCUSSION

Overall, the results for hypothesis H1 suggest that
providing an explanation for the robot’s decision helped
participants predict the robot’s behaviour in the hypothetical
scenario, suggesting that the explanations led to an improved
understanding of the robot’s decision. This partially provides

evidence for hypothesis H1. However, the results for hypoth-
esis H2 suggest that participants who received explanations
and counterfactual statements were not significantly different
in their ability to predict the robot’s behaviour than the con-
trol group, performing worse than those who only received
explanations, going against hypothesis H2. These results
appear to agree with similar results from van der Waa et
al. [18], who found no significant difference in participants’
ability to predict a system’s output given contrastive rule-
based explanations, whose form is similar to the explanations
and counterfactual statements received by group CF when
compared to a control who received no explanations.

While it is impossible to ascertain the reasons why the
addition of counterfactual statements harmed performance
given the data we have collected, one possible reason for
this effect is that adding the counterfactual statement to
the explanation added too much information for participants
to parse, increasing cognitive load and confusion. Another
possibility is that the counterfactual statement may have
reinforced false impressions of the robot’s “intentions”. For
example, consider the explanations depicted in Fig. 3. In
this example, Person A did not have the maximum possible
engagement value (EVAR), and thus one valid counterfactual
explanation, as presented here, is to suggest that Person
C would be a preferred target if their engagement value
EVCR was very high. Some participants may interpret such
an explanation as indicating that the robot would somehow
prefer to speak to Person C but had to settle for Person
A. While this confusion could be communicated by the
explanation alone, the counterfactual statement may possibly
serve to reinforce it.

The results for hypothesis H3 hint at distance-based ques-
tions being overall easier to predict, which partially supports
hypothesis H3. However the lack of statistical significance
and the fact that questions based on mutual gaze appear to
be harder to predict (especially for those in group CF, where
results are significant), may prove damning for the hypothe-
sis. Further studies with larger sample sizes would be needed
to more definitively determine the effect of the explanation
variable on the ability to predict the robot’s decision-making,
accounting for the types of explanations provided.

Finally, as an exploratory hypothesis, we evaluated
whether the number of people in the depicted scene had
an impact on the participants’ ability to guess the correct
answer regardless of the groups to which they belonged,
speculating that the more people, the higher the chance
to make a mistake, due to more complexity in the scene,
more possibilities for errors in the perception system (e.g.
due to occlusions in a crowd of people) and due to the
effect of misinterpreted robot intentions discussed above.
Results show a trend that could support our hypothesis.
Indeed, when the scene contained more than 1 person,
the participants tended to guess the incorrect answer
(F (1, 91) = 2.99, R2 = 0.03 β = −0.33, p = 0.08) more
often than in cases where only 1 person was detected.



VI. CONCLUSION

In this work, we have devised a method for generating
explanations that allows robotic systems to provide real-time
counterfactual explanations of their decisions in real-world
settings that involve multiple people. To assess the efficacy
of our approach in improving participants’ understanding of
the robot’s decision-making process, we conducted an “in-
the-wild” user study with 92 participants.

Our findings suggest that explanations of a robot’s deci-
sions are indeed useful in aiding people’s abilities to predict
the robot’s behaviour in similar situations, which would sug-
gest an affirmative answer to our research question. However,
our results also indicate that the addition of counterfactual
statements to an explanation erases the benefits of such
explanations, though further work is needed to ascertain the
mechanism by which this takes place. This future work could
explicitly measure factors such as confusion and cognitive
load. Further research on generating different types of expla-
nations (e.g. comparing to a past decision rather than a coun-
terfactual), different approaches to presenting explanations
(e.g. multi-modal explanations, proactive vs. reactive, etc.),
and making the process of receiving an explanation more
interactive (e.g. by allowing prolonged interactions involving
follow-up questions and explanations) may also help us
to understand how explanations can be used to promote
understanding of robot behaviour in real-world environments.

We consider our work a necessary first step to the
evaluation of automatically generated explanations of real
interactions in real-world domains. However, it does come
with some limitations, foremost of which are those associated
with “in-the-wild” studies on explainable HRI. These include
the large number of confounding factors present in real-world
domains as well as the logistical and engineering difficulties
associated with developing and deploying these systems out-
side of the lab. To address the latter concern, improvements
can be made to the perception system to make measurements
of features such as distance and gaze direction more reliable,
and to the decision-making system and robot actions in
order to make interactions more responsive, purposeful and
meaningful to the users. Different evaluation metrics can
also be investigated, provided they are practical to measure
“in-the-wild”. To address the former, more measurements
can be made to capture as many factors as possible, such as
human motions and group dynamics. User modelling can be
used to incorporate the intentions, goals and mental states
of the people involved in interactions and explanations.
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