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Abstract

Explainability is an important tool for human-robot interaction
(HRI). By explaining its decisions and beliefs, a robot can promote
understandability and thereby foster desiderata such as trust, ac-
ceptance and usability. However, HRI domains pose challenges to
automatic explanation generation. In such domains, a robot must
consider the causal reasons for behaviour embedded in temporal
sequences of decisions, all while factoring in noise and uncertainty
inherent to these kinds of domains. Additionally, as explainabil-
ity itself constitutes a human-robot interaction, it is important for
robots to be able to properly interpret user questions and effectively
communicate explanations in order to improve understanding. In
our work, we address these challenges from a causal perspective,
developing methods that use causal models in order to automati-
cally generate causal, counterfactual explanations in HRI domains.
We also produce some insights into embedding such a system in a
human-robot interaction in order to maximise understandability.

CCS Concepts

« Computing methodologies — Reasoning about belief and
knowledge; - Human-centered computing — Human computer
interaction (HCI).
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1 Introduction

The ability for systems to explain the reasons for their decisions,
has been deemed critically important by researchers [17, 20] and
policy makers [7]. This is especially true in human-robot interaction
(HRI) scenarios, where improved understandability can enhance fac-
tors such as trust, usability, and collaborative performance [9, 22].
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Figure 1: An overview of our explainability approach, illustrating
how we generate explanations from user queries.

There are many different approaches for automatically generating
explanations in explainable artificial intelligence (XAI) [21] and
explainable robotics [19] contexts, relying on different formulations
of explanations. We follow the formulation provided by Miller [17],
who identifies that explanations are inherently contrastive, and an-
swer questions of the form “Why X and not Y?”, where X is a real
event and Y is a hypothetical event. Pearl and Mackenzie [18] have
argued that answering such “Why” questions requires counterfac-
tual reasoning grounded in notions of causality. By maintaining a
causal model of an environment, counterfactual scenarios can be ex-
amined by intervening on the model, and thus, causes for particular
decisions or events can be determined. Some work has taken place in
using causal models to generate explanations in both XAI [3, 4] and
robotics [5] contexts, but the field remains open to further research.

Robotics and HRI domains present unique challenges for explain-
ability. For one, robot executions represent a temporal sequence of
decisions, and thus a robot should be able to explain its behaviour
in terms of past decisions and states. Additionally, robot decisions
factor in several sources of uncertainty [11, 25], such as noisy obser-
vations, hidden state variables (where human internal states are not
observable directly), and uncertain outcomes of physical and social
actions. Finally, the robot’s explainability system needs to be situ-
ated within an HRI, where the robot must estimate which informa-
tion to provide to a user in response to a query [16], and how best to
communicate that information to maximise understandability [2].

Given these challenges, our research seeks to address the follow-
ing research questions:

¢ RQ1 - How can we produce accurate, causally-grounded
explanations of robot decisions in HRI environments?

e RQ2 - How can this approach be extended to complex tem-
poral sequences of robot decisions and beliefs?


https://orcid.org/0000-0001-6441-3777
https://orcid.org/0000-0002-6641-6450
https://orcid.org/0000-0002-6018-154X

$X$


$Y$


$X$


$Y$


$X$


$R$


$R^*$


$Y$


$A$


$B$



https://doi.org/10.1145/3776734.3794634
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776734.3794634

HRI Companion "26, March 16-19, 2026, Edinburgh, Scotland, UK

e RQ3 - How can the inherent uncertainty present in HRI be
incorporated into explanation generation approaches?

e RQ4 - How can such a explanation generation be embedded
into an HRI to maximise the system’s understandability?

2 Methodology and Results to Date

Here we divide our methodology and current work by research
question. A complete overview is provided in Fig. 1.

RQ1: Explaining Single Decisions - Our initial work focused
on adapting causal, counterfactual explanation generation (e.g. [5])
to unstructured HRI domains [12]. We considered a scenario where
a robot was placed in a public space and proactively elicited interac-
tions from passers-by. We devised a two-level perception-decision
pipeline. In layer 1, the robot used pose estimations to calculate
the engagement of each person with the robot, via features such
as distance and gaze direction. In layer 2, those features are used
to make decisions regarding eliciting an HRI. We modelled the
pipeline using a causal model, with the novel contribution that
model subgraphs could be dynamically added/removed based on
the number of people detected. A counterfactual search is then
performed to generate templated explanations of the form “I did
X because R. If instead R*, then I would have done Y”. This system
was subsequently deployed in a user study “in the wild” [13], where
the robot successfully generated explanations automatically and in
real time, in order to measure their effects on understandability (see
RQ4). These initial results demonstrated that causal, counterfactual
explanations could be effectively deployed in HRI environments.

RQ2: Explaining Temporal Behaviour - Many real-world
HRI scenarios require robots to execute intricate sequences of ac-
tions. To represent such sequential decision-making within a causal
model, we turned to Behaviour Trees (BTs) as a well-suited control
architecture [10]. The novelty of our approach is that we auto-
matically construct a causal model (representing decisions, node
executions, return statuses and environment states) directly from
the structure of a BT and domain knowledge in the form of a causal
model of the state [14]. This model can then be instantiated us-
ing episodic memory and queried for explanations similarly to our
previous approaches [12, 13]. While there are other methods for
producing explanations from BTs [8, 23], our method is capable of
generating causal, contrastive explanations, which we show to be
accurate in a simulated cognitive exercise use case [14].

RQ4: Explainability as an Interaction - When conceptualis-
ing explainability as an HRI, we can divide it into a few stages [2, 16],
some of which are addressed by our work (see Fig. 1). Firstly, the
robot must interpret a user’s question (query interpretation). In [14]
we provide a formal representation of a contrastive “Why A and
not B?” query that can be used to initiate a counterfactual search
of a causal model. In a work under review [15], we employ an
LLM-based orchestrator for selecting an appropriate explanation
module given a user’s query and other relevant context (e.g. task
execution statuses). Evaluated in a home assistance robot domain,
our approach successfully selected the correct component in 99.4%
of execution-query pairs.

Secondly, the robot must communicate the explanation’s con-
tents in a human-understandable format (explanation communi-
cation). Most of our current work has leveraged template-based
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approaches [12-14], but we have also investigated using an LLM
to convert a formal explanation to natural language [15]. By gen-
erating the explanation using a causal model and then converting
the formal explanation to natural language, we maintain a higher
explanation accuracy than an end-to-end LLM-based approach.
We have also explored how explanations affect understandability
(explanation reception). In a systematic review [6], we examined how
understandability is measured in HRI. The review reveals a lack of
standardisation in measuring understandability across all types of
measures and a lack of longitudinal studies on the temporal effects
of explanations on understandability. We found only one instance of
“in the wild” evaluations — our previous work addressing RQ1 [13].

3 Future Work

RQ3: Factoring Uncertainty - Given the uncertainty in robotic
domains and decision-making [11, 25], we have identified three
ways in which such uncertainty should be factored into explanation
generation. Firstly, explanations should be able to express the effect
of uncertainty on decision-making or beliefs. For example, if the ro-
bot selects one path over another because it is more confident in the
first path being clear, this confidence should be expressed in the ex-
planation. Secondly, even if uncertainty is not directly factored into
decision-making, explanations should be able to express that the
robot’s beliefs may not correspond with the user’s understanding of
the environment (e.g. “I believed/thought you were frustrated”). By
addressing the perceptual belief problem in this way [24], a robot
can not only help a user locate discrepancies in its world model but
also foster a shared understanding of the situation. Finally, uncer-
tainty should be factored into counterfactual scenarios (e.g. “If T had
fetched a pizza instead of the salad, you most likely would have been
happier”), allowing the robot to express the uncertainty that arises
from stochastic processes in the causal model itself. In all these cases,
extending the approach we developed for RQ1 and RQ2 to incorpo-
rate probability (e.g. using a causal Bayesian network) may prove
to be successful, although this introduces the problem of correctly
estimating the conditional probability distribution. One potential so-
lution may lie in learning the distribution through simulation [1, 5].
RQ4: Enhancing Explainability Interaction - While we have
taken some steps towards addressing RQ4, more work can be done
to better situate explanation generation in an HRI. We propose
investigating LLM-based methods by which natural language ques-
tions can be converted into formal contrastive queries. By allowing
a robot to interpret natural language in this way we can ensure
smoother and more natural explanatory interactions. Such a nat-
ural language interface will allow us to conduct a user study in
which users engage in prolonged, interactive explanatory sessions,
enabled by the temporal explanations produced in [14] and incor-
porating uncertainty as discussed for RQ3. By conducting such a
study, we hope to better understand how users form a complete
understanding of complex robot behaviour in HRI settings.
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